ALICE TPC Collaboration Meeting

PASA Bulk Test

Status Update and Preliminary Results

Uwe Bonnes, TU Darmstadt

17.5.2004
PASA Bulk Test

U.Bonnes TU Darmstadt

for Cagliari TPC Meeting 16/17.05.2004

• Status

 – 31.760 packaged Chips from production run delivered to Darmstadt end of March
 – About 5 wafers not packaged by AMS due to bad parameters seen by process monitoring (PMOS transistors ?)
 – Test fixture, PC with software and about 10.000 chips transported by car to LUND
 – Communication with robot added to software there
• **Status**

 - Test socket changed from Clamp Shell to pressured air actuated Open Top Socket
 - New calibration for this socket was needed
 - Robot adapted by Lund to handle changed tray (60 vs. 48 chips) and changed socket
 - New PC (Athlon 3000+) needs about 13 seconds per chip, robot needs about 20 seconds for handling
 - Robot can handle 5 to 6 full tray with new chips and runs about 3 hours to test and sort them
PASA Bulk Test

U.Bonnes TU Darmstadt

for Cagliari TPC Meeting 16/17.05.2004

• Status

 – 835 tray in total
 – Since April 16, Lund is running the Test with mostly 4 tray change procedures per day, even on weekends
 – Switch from test of engineering run to production run already done, nearly on the fly
 – First Socket broke after around 35,000 insertions
 – Many thanks to the Lund people for that great work and cooperation
PASA Bulk Test

U.Bonnes TU Darmstadt
for Cagliari TPC Meeting 16/17.05.2004

• Sorting criterias
 – Few chip show gross errors (high current, no gain) and should be declared “non functional”
 – All other chips have close distribution in peaking time and an even smaller distribution in gain inside one run
 – Offset voltage fluctuations is noticable, has impact on dynamic range and is not correctable by software
 – Try to keep the sorting prodecure simple (few classes),
 – Try to satisfy Alice needs with the applied sorting criterias (35.600 + 10 % spare + X % stock)
• Choosen Limits

 – allow +/- 5% gain tolerance around estimated mean for given run
 – allow +/- 6% peaking time tolerance
 – allow +/- 50 mV tolerance in Offset voltage
 – Looking back, offset voltage mean was estimated about 2 mV too high
• Production versus Engineering Run
 - Gain: - 2.1% (13.11 versus 13.29 mV/fC)
 - Peaking Time: +3.8% (162.7 versus 156.7 ns)
 - Offset Voltage: -1 mV (nearly the same)
 - Offset Voltage distribution: +2%
Gain vs Peaking Time (Eng.)

Peaking Time (ns)

Gain (mV/fC)
PASA Bulk Test
U.Bonnes TU Darmstadt
for Cagliari TPC Meeting 16/17.05.2004

• Results

 – 36.172 Chips tested with robot so long (May 14)
 – 1.8 % non functional against 3.6 % reported in Heidelberg (better socket contact?, less manual handling and so less ESD damage?)
 – 10.1% out of tolerance (will slightly go up)
 – Expect around 43.000 good chips in total

• Recycle “out of tolerance” chips

 – About 70 % of the out of tolerance can be recuperated by resorting in two additional classes (same offset span, but different center (+/- 15 mV))