Readout Control Unit Status

Overview
RCU card and sub-cards
Status of different modules/tasks
Milestones
RCU Main Building Blocks Implementation

- Power
- Bus Termination
- FEB A
- FEB B
- FPGA
- Config
- TTC
- DCS

RCU Mother-board
SIU Mezzanine board
TTCrx/DCS Mezzanine board
RCU Board in the Lab
Read out Control Unit

Read out Control Unit (revision 1.1 - Oct '03)

- Schematics (pdf)
- Components numbering top (pdf)
- Components numbering bottom (pdf)
- Pinning table EP20K20CEFL-BGA672 (generated from Capture CIs) (dts)
- More to come
- PCB GERBER files

- Lay01.pdf (top)
- Lay02.pdf
- Lay03.pdf
- Lay04.pdf
- Lay05.pdf
- Lay06.pdf
- Lay07.pdf
- Lay08.pdf
- Lay09.pdf
- Lay10.pdf
- Lay11.pdf
- Lay12.pdf (bottom)

Picture of the PCB
Internal RCU Bus - Revised

• **BUS Master Interface**

 - clock 1 --> bus clock
 - rst_n 1 --> bus reset
 - b_addr 16 --> address
 - b_data 32 <--> data
 - b_RnW 1 --> Read/Write : 1=Read/0=Write
 - b_cstb_n 1 --> Common Strobe: master indicates valid address/data
 - b_ack_n 1 <-- Acknowledge: target indicates valid transaction
External Communication

- RCU <-> DCS DIM Server Client Scheme over ethernet
- RCU <-> Trigger VME based test setup
- SIU <-> DIU pRORC based Test setup
- RCU <-> FEC Front End Card Interface
TTCrx

- A snapshot of a L1Accept by the TTCrx.
- The Counters are incremented and the strobesignals are set.
• An individual Address Command (IAC) sent to the chip.
• The data is received by the chip and put to the outgoing lines.
RCU <-> Trigger

- VME based test setup:
 - VP 110 CPU board running LINUX
 - TTCvi, TTCvx

- TTCrx chip communication has been tested successfully
RCU <-> DiU

- pRORC based Test setup
- The Data Assembler Module also contains a pattern generator
- The PG can be configured and started by writing to the command register
- Bidirectional functionality implemented
- Has been successfully tested with the SIU-DIU link
A simple RCU module debugging environment

- The ARMRCU design provides a simple interface to enable the user to test RCU target modules.
- Based on the Excalibur ARM connected to a RCU master module.
- A simple C-program makes it possible to execute RCU bus transactions as reading and writing from/to a RCU target module.
- Altera SignalTap is used to capture and store signal activity from any internal device node.
RCU Board Final Layout

SIU
W=150mm
H=37mm

DCS
W=Max appr. 150 mm
H=MAX 90 mm

RCU Mother board
W=appr. 250 mm
H=max 143 mm

DDL fiber

TTCrX fiber
Milestones

- **Milestones:**
 - Radiation tests: Ongoing
 - Oslo Cyclotron Next Beam Time - March 2004
 - Uppsala TSL Next Beam Time - March 2004
 - Final PCB Layout: June 2004
 - Partial System Integration: March 2004
 - Beam Test (3 RCUs): May 2004
 - Qualification of the final design: October 2003-May 2004
 - Production of the final prototype: June 2004-July 2004
Open issues

• Migration to Actel