Front End Card and Readout Backplane Status

Alice TPC Meeting – Heidelberg 12-13 February 2004

Roberto Campagnolo

October – December 03: 50 FECs from Note-Xperi (Lund) delivered and tested at CERN:

- 3 class of errors:
 1. Altros’ memory single bit stuck (6 chip out of 400) – expected, because the test procedure in Lund was not yet the complete one.
 2. Pasas’ single channel not working (1 chip out of 280) – baselines’ steady state wrong
 3. Errors in assembly: 6 Cards (12%)
Alice TPC Front End Card – status 2/2

- **January 04: Completion of the radiation test campaign in Oslo:**

 Last components irradiated (p-beam at 60 MeV):

 20 Tantalum capacitors from AVX and Kemet (2.2, 10, 15 and 22µF)

 (irradiated up to ~120 Krad, no variations in C and ESR)

 4 Schottky diodes from Philips (BAT54)

 (irradiated up to ~400 Krad, no variations in V_γ)

 4 BJT transistors from Motorola (MMBT2222ALT1)

 (irradiated up to ~400 Krad, variations of 10% in Vce-sat at ~120KRad)

 6 Voltage references from Micrel (LM4040-2.5; LM4041-1.2)

 (linear drift with irradiation for 2500mV: 1% output variation at ~45 Krad)

 (1225mV model: stable up to ~300 KRad)

 5 Operational Amplifiers from Texas Instruments (OPA4364AI)

 (spikes in output when irradiation reaches ~140KRad)

- **February 04: Launched production of 200 Cards (4.6% of Alice!)**
Radiation Tests (Oslo, past 19-20 January)

- Tantalum Capacitors
- 2222A BJTransistor
- BAT54 Schottky diode
- OPA4364 OA Buffers
- LM404X Ref Voltage

Roberto Campagnolo – CERN
Tantalum caps: AVX 15uF, 10 V

(Up to 120 KRad)
BJT MMBT2222ALT1

(volutions of 10 % in Vce-sat every ~140KRad)

Exposition Time (~ 21KRad/min)
Reference Voltages LM4040-2.5 and LM4041-1.2

(output stable within 0.3 %)

(1 % output variation @ 45 Krad)

(~21 Krad/min)
Exposition Time (~21 KRad/min)

Output Voltage

Series 1

(Output stable ‘till ~140 Krad)
Readout Backplane – Status

All the backplanes have been designed

No differences in the RCU connectors positions

(despite the different topology of the FECs)

Backplanes for C2 and C6 have been manufactured and tested (very good signal integrity)

Overall TPC : 36 trapezoidal sectors (216 crates)
Readout Backplane design

Technology:
4 Layers, Class 4, flexible PCB
(4 x 35µm Cu + 3 x 200µm FR4)

Electrical Characteristics:
• 76 ohm - Impedance controlled signal lines
• Low resistance (~10mOhm) and Low Inductance (~8nH) lines for Termination Voltage distribution
Backplane Mechanical aspects 1

- FEC SLOTS (13-slot branch)
- 19.5 cm
- service card integrated in the backplane
- FEC slot
- RCU slot
25 FECs Readout Partition (3200 channels)

- Readout and Control Backplane
- Backplane connectors for the Readout Control Unit
- I2C Connectors
- Power Supply Connectors
End of presentation
TPC IROC
Alice TPC Front End Card - schematics

- Front End Connectors w/ additional GND conn. → Detector PADs
- Back End Connectors → Backplane

Modifications on:
- Card Switch and re-Conf. !
- LDOs default state
- Board Controller
- ALTROs TSTMode addr’ing
- Clock signals ‘tap-off’
New Feature: FPGA re-conf. without ALTROs’ conf. losing

FPGA RE-CONF. TIMING PRINCIPLE:

- **CARD_SW**: 2.69 MICROSECONDS (CARD OFF)
- **BC_CONF** (FOLLOW CARD SW)
- **CONF_DONE**: 110 MICROSECONDS
- **INTERRUPT**: 110 MICROSECONDS
- **MPS_ENABLE**: 400 MICROSECONDS

BC_CONF

CARD_SW (ACTIVE HIGH)
- **CARD_SW_AUX** (FROM BACKPLANE CONNECTOR)
- **BC_INT** (ACTIVE LOW)
- **MPS_ERROR** (OPEN DRAIN - ACTIVE LOW)

FEC Power, re-Conf and Interrupt Control block
Low Drop Out Regulators Section
Acex 1K30 SRam FPGA based Board Controller
Tap-off resistors for M/Drop clock signals distribution