TPC Bus Bar Measurement

J. Baechler, C. Engster, L. Musa

OUTLINE

- TPC low voltage distribution scheme
- Digital current variation
- Test Setup
- Measurements preliminary results
- Conclusion
What is the transient response of the bus bar?

Bus bar description
- Analogue: 4.0 V, 60 A stdby, 60 A max, 100 mm² bus bar section
- Digital: 3.3 V, 133 A stdby, 194 A max, 200 mm² bus bar section

Wiener power supplies
- **DIGITAL**
 - 115A max
- **DIGITAL**
 - 115A max
- **ANALOGUE**
 - 115A max

TPC endplate
- 121 FEE Cards
- Bus Bar pair (positive + return line)
- $L \sim 11\mu H$
- $R = 2 \times 3.4$ mΩ, $\Delta V = 1.32$ V
- $R = 2 \times 6.8$ mΩ, $\Delta V = 816$ mV
- 40m
Dynamic Digital Current Consumption

Power Supply

3.3V

100 µF

Regulator

2.5V

1 µF

ALTRO

10 × 100 nF

Current Consumption during Trigger

Current (a.u.)

Time (µs)

60A

(15A / µs)

4 µs peaking time

Standby power

0 50 100 150 200

15 April 2003 Luciano Musa
Dynamic Digital Current Consumption

Power Supply

3.3V

100 µF

Regulator

2.5V

1 µF

ALTRO

1 0 × 100 nF

Current Consumption during Trigger

60A

(0.6A / µs)

Current (a.u.)

0

50

100

150

200

Time (µs)

Standby power

100 µs peaking time

15 April 2003

Luciano Musa
Test Configurations

Configuration A: \(R = \infty \) \(C=0 \)
Configuration B: \(R=25m\Omega \) \(C=0; \)
Configuration C: \(R=25m\Omega \) \(C=70mF \)
Configuration D: \(R = \infty \) \(C=70mF \)
Measurement 1 (configuration A)

<table>
<thead>
<tr>
<th>Test Parameters</th>
<th>(\Delta I , (A))</th>
<th>Freq (Hz)</th>
<th>(\Delta T_{HIGH} , (ms))</th>
<th>Slew rate ((A/\mu s))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60</td>
<td>100</td>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>

A sudden interruption of the current can damage the Front End Cards!
Measurement 2 (configuration B)

<table>
<thead>
<tr>
<th>Test Parameters</th>
<th>(\Delta I) (A)</th>
<th>Freq (Hz)</th>
<th>(\Delta T_{\text{HIGH}}) (ms)</th>
<th>Slew rate (A/(\mu)s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>41.6</td>
<td>100</td>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>

A current swing of 41.6A produces a transient voltage of \(\sim 1.8V \)

Voltage drop across the bar for a current swing of 60A:

- \(\Delta V \) low load (dc) \(0.90 \) V
- \(\Delta V \) high load (dc) \(1.32 \) V
- \(\Delta V \) (transient) \(3.40 \) V
Measurements 3 (configuration C)

Test Parameters

<table>
<thead>
<tr>
<th>ΔI (A)</th>
<th>Freq (Hz)</th>
<th>ΔT_{HIGH} (ms)</th>
<th>Slew rate (A/μs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.6</td>
<td>100</td>
<td>A</td>
<td>4 A</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>B</td>
<td>0.1 B</td>
</tr>
</tbody>
</table>

70mF in parallel to the electronic load absorbs the large transient spikes

ALICE TPC conditions

0.95V

0.30V
Measurements 4 (configuration D)

Test Parameters

<table>
<thead>
<tr>
<th>ΔI (A)</th>
<th>Freq (Hz)</th>
<th>ΔT_{HIGH} (ms)</th>
<th>Slew rate (A/μs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>10</td>
<td>40</td>
<td>10</td>
</tr>
</tbody>
</table>

[Diagram showing voltage change and time intervals]
Measurements 5 (configuration A + sense wire)

The sensing feedback is not fast enough to react to the load variations.

<table>
<thead>
<tr>
<th>Test Parameters</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔI (A)</td>
<td>Freq (Hz)</td>
<td>ΔT_{HIGH} (ms)</td>
<td>Slew rate (A/μs)</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>100</td>
<td>A</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>“</td>
<td>1000</td>
<td>B</td>
<td>0.1</td>
<td>“</td>
</tr>
</tbody>
</table>

ALICE TPC conditions

- $3.3V$
- 100μs
- $2.5V$
- 200μs
Measurements 6 (configuration C + sense wire)

The sensing feedback is not fast enough to react to the load variations

<table>
<thead>
<tr>
<th>Test Parameters</th>
<th>(\Delta I) (A)</th>
<th>Freq (Hz)</th>
<th>(\Delta T_{\text{HIGH}}) (ms)</th>
<th>Slew rate (A/(\mu)s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>41.6</td>
<td>100</td>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>

1.2V

[Graph showing a waveform with 1.2V and 1.00 V markers]
The sensing feedback is not fast enough to react to the load variations

<table>
<thead>
<tr>
<th>Test Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔI (A)</td>
</tr>
<tr>
<td>41.6</td>
</tr>
</tbody>
</table>

![Graph showing test parameters and measurements](image1)

![Graph showing test parameters and measurements](image2)
Summary and Conclusions

- The distribution of the Analogue Voltage (static load) does not pose any problem.
- The distribution of the Digital Voltage (dynamic load) requires the insertion of protection capacitors.
- The protection capacitors have to be very close to the front-end cards.
- The long term reliability of large-value capacitors (10mF) has to be verified.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Voltage (digital) on load</th>
<th>Voltage drop across bus bar</th>
<th>Required Voltage at the source</th>
</tr>
</thead>
<tbody>
<tr>
<td>No CAP</td>
<td>3.3V</td>
<td>~3.4V</td>
<td>~6.7V</td>
</tr>
<tr>
<td>70mF CAP</td>
<td>~1.2V</td>
<td>~4.5V</td>
<td></td>
</tr>
</tbody>
</table>
TPC SECTOR TEST