The TPC Front End Electronics – Progress report

Roberto Campagnolo – CERN Ph-Ed

TPC FEE Collaboration:

- Bergen
- CERN
- Darmstadt
- Frankfurt
- Heidelberg
- Lund
Outline

The ALICE TPC Front End Electronics

Progress overview of the main components:

• Front End Card (FEC)
 • Shaping Amplifier (PASA)
 • Digitizer and digital processor (ALTRO)
 • Board Controller

• Readout and Control Backplane

• Readout Control Unit (RCU)
 • Functions and performance
 • FPGA - radiation strategy
 • Prototyping status

Integration with the Detector:

• TPC Field Cage prototype in hall 167
 • PASA and ALTRO performance

• Test Beam at T10
 • System noise and TPC on-line monitor

Conclusions and future work
Front End Card Overview 1/3

8 PASA CHIPS (16 CH/CHIP)
8 ALTROCHIPS (16 CH/CHIP)

128 Channels

Pre-Amplifier

Shaper

10Ms/s
10bitADC

Digital Circuit

Multi event buffer

Baseline correction
Tail Cancellation
Zero suppression

Board Controller

GT bus-transceivers

Connection to the RCU via a Custom GTL Backplane

Kapton cables (7 cm. length)

570132 PADS

drift region 88µs

gating grid

Pad plane

anode wire

DETECTOR

17 cm

19 cm

17 cm

Board Supply And Monitoring

Monitoring

GT bus-transceivers
PASA Production and Test Summary

- Noise: 560e (12pF)
- Conversion gain: 12mV / fC
- Shaping time: 188ns
- Power consumption: 11mW / ch

- process: AMS CMOS 0.35 mm
- area: 18 mm2
- ER samples (500 chips): Sep '03
- full delivery (49359 chips): Jan '04
- Completion of mass test: Jun '04
- yield (working chips): 94%
- Yield: 83% |CG| < 5%, |PT| <5%, |BSL| < 5%
Front End Card Overview 2/3

The ALTRO chip
ALTRO Production and Test Summary

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>HCMOS-7 (0.25 µm)</td>
</tr>
<tr>
<td>Area</td>
<td>64 mm²</td>
</tr>
<tr>
<td>Transistors</td>
<td>6 millions</td>
</tr>
<tr>
<td>Embedded memory</td>
<td>800 kbit</td>
</tr>
<tr>
<td>ENOB</td>
<td>9.7</td>
</tr>
<tr>
<td>Power</td>
<td>16mW / channel</td>
</tr>
<tr>
<td>ER (4K chips)</td>
<td>Apr ’02</td>
</tr>
<tr>
<td>Mass prod. (44K chips)</td>
<td>Dec ’02</td>
</tr>
<tr>
<td>Mass test</td>
<td>Aug ’04</td>
</tr>
<tr>
<td>Yield</td>
<td>84%</td>
</tr>
</tbody>
</table>
Front End Card Overview 3/3
The Board Controller logic

FEC

Board Controller

ALTRO-bus Interface

Mode of use and operation

GTL Transceivers Control logic

mADC Interface

Memory

Card-Configuration Registers

Temperature

Analog Voltage

Analog Current

Digital Voltage

Digital Current

Error / Interrupt Flags

Local Slow Control Interface

FEC ALTROs’ Internal Bus

Power-Regulators and Clock distribution

GTL-bus drivers

5 channel ADC

Hardware Resources: FPGA Altera Acex 1k30

Readout and Control Backplane

ALICE TPC FEE progress report, 14 Feb 05

Roberto Campagnolo - CERN
Alice TPC FEE

The Front End Card Mass Production and Test – Status Report
FEC Mass Production summary

- Production of 4800 FEC
 - Contract signed in Dec ’03 (Note-Xperi @ Lund)
 - Pre-series of 50 boards with good quality (Feb ’04)
 - Pre-series of 200 boards (May ’04)
 - Full production started in Oct ’04
 - Reached a production rate up to 400 boards/week with 2100 boards delivered so far
 - Production quality is surveyed at CERN by testing 5x lots of 50 boards (5% of the full production)
 - 2 lots received and tested @ CERN : Yield > 90%
FEC Mass Production Tests Summary

Test sites

- **Frankfurt** (mass test), and **CERN** (production quality survey)

Test Procedure

- Verification of the supply voltages and currents
- Combination of the PASA and ALTRO tests
- Test of FPGA, Readout and Control Network interfaces
- All information stored in the ALICE Detector Construction Database

Status

- **Hardware**: test bench and test procedures (semi-automatic) fully operational
- **Software**: Control, Acquisition and Analysis - ready
- **Projected test rate**: 80 boards / dd → 1600 boards / mm
- **Starting from end of February** → Full mass test completion by April 2005
FEC Mass Test – Card Tester in Frankfurt

Kapton insertion tool

Test signal generator

Signal injector card
Outline

The ALICE TPC Front End Electronics

Progress overview of the main components:

- Front End Card (FEC)
 - Shaping Amplifier (PASA)
 - Digitizer and digital processor (ALTRO)
 - Board Controller
- Readout and Control Backplane
- Readout Control Unit (RCU)
 - Functions and performance
 - FPGA - radiation strategy
 - Prototyping status

Integration with the Detector:

- TPC Field Cage prototype in hall 167
 - PASA and ALTRO performance
- Test Beam at T10
 - System noise and TPC on-line monitor

Conclusions and future work
Readout Backplane – example of readout partition

Up to 25 Front End Cards (3200 channels)

Readout and Control Backplane

Branch B

Branch A

Power Connector

RCU slot
Readout Backplane - Electrical and Mechanical details

Technology:
4 Layers, Class 4 PCB
(4 x 35µm Cu + 3 x 200µm FR4)

service card integrated in the backplane

FECs SIDE
Connectors’ Locking Mechanism
All backplanes (24 different PCBs) are ready for production
 • Mechanical test OK
 • Electrical test OK
 • Integration Test: in SSW in progress, with new RCU to be done
 • Production database submitted to several Manufacturers

Test Bench for mass test ready

Test Software in progress

Production will start after integration test with final RCU (Feb ’05)
The ALICE TPC Front End Electronics

Progress overview of the main components:

- Front End Card (FEC)
 - Shaping Amplifier (PASA)
 - Digitizer and digital processor (ALTRO)
 - Board Controller
- Readout and Control Backplane
- Readout Control Unit (RCU)
 - Functions and performance
 - FPGA - radiation strategy
 - Prototyping status

Integration with the Detector:

- TPC Field Cage prototype in hall 167
 - PASA and ALTRO performance
- Test Beam at T10
 - System noise and TPC on-line monitor

Conclusions and future work
FEE Architecture and Components: the Readout Control Unit

- RCU
- Ethernet
- DCS int. (Ethernet)
- DCS (DAO)
- TTC optical Link (Clock, L1 and L2)
- Detector Data Link (DAQ)
- TTC Receiver (TTC-RX)
- Rdo Backplane
- 2 branches of PCB Backplanes
- PASA – ALTRO
- FEC 128 ch

ALICE TPC FEE progress report, 14 Feb 05
Roberto Campagnolo - CERN
Readout Control Unit – Bottom Side

- RCU to FECs CONNECTORS
- BUS Transceivers
- FPGA
 Altera APEX20K400E
Readout Control Unit – FPGA Main Functions

– Readout related:

• FEE Initialization
• Distribution of the trigger and clock signals
• Dataflow control

by the ALTRO bus (VME-like custom bus)

– Slow Control related:

• Supervision and monitoring:
 – FEE Power-on procedure
 – FEE Status parameters (Temperature, Voltages, Currents, Counters, ...)
 – Interrupt and error handling

by the Local Slow Control bus (I2C-like custom bus)
System Performance 1/3 : Initialization (set up time)

Typical configuration data per partition: 350 Kbytes,
they can be transferred to the RCU both via the DDL or via the DCS link.
System Performance 2/3: Data Readout (run time)

The readout time is dependent by the event size.

(40 bit ALTRO protocol to 32 bit RCU and DAQ protocol)
System Performance 3/3 : Local Slow Control

~ 2 ms
Outline

The ALICE TPC Front End Electronics

Progress overview of the main components:

- Front End Card (FEC)
 - Shaping Amplifier (PASA)
 - Digitizer and digital processor (ALTRO)
 - Board Controller
- Readout and Control Backplane
- Readout Control Unit (RCU)
 - Functions and performance
 - FPGA - radiation strategy
 - Prototyping status

Integration with the Detector:

- TPC Field Cage prototype in hall 167
 - PASA and ALTRO performance
- Test Beam at T10
 - System noise and TPC on-line monitor

Conclusions and future work
SEU in RCU FPGA

Expected numbers of SEUs for the different scoring regions in the TPC detector

| Sector | SEU/(FPGA s) [$x 10^{-6}$] | μ-absorber side | | | | | | |
|--------|---------------------------|-----------------|---|---|---|---|---|
| | | 1 | 2 | 3 | 4 | 5 | 6 |
| 1 | 2.4 ± 0.4 | 2.0 ± 0.4 | 1.6 ± 0.3 | 1.1 ± 0.2 | 0.9 ± 0.2 | 0.8 ± 0.1 |
| 2 | | 1.6 ± 0.3 | 1.3 ± 0.2 | 0.9 ± 0.2 | 0.7 ± 0.1 | 0.6 ± 0.1 | 0.5 ± 0.1 |

Errors per run (4 hours) per TPC system

<table>
<thead>
<tr>
<th>System</th>
<th>Rate (FPGA s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCU</td>
<td>3.7 (Altera Apex 20KE)</td>
<td></td>
</tr>
<tr>
<td>SIU</td>
<td>1.0 (Altera Apex, new version with Actel pAsic ready soon)</td>
<td></td>
</tr>
<tr>
<td>DCS</td>
<td>1.9 (Altera Excalibur, with ARM hardwired processor)</td>
<td></td>
</tr>
</tbody>
</table>
• SRAM based FPGAs
 – Error rate is so low that one can cope with it – if SEUs can be detected instantenously and FPGA can be reconfigured in real-time
 – ALTERA FPGAs do not provide real-time readback of configuration data
 – Better choice: XILINX Virtex-IIPro FPGAs
 • Real-time (= while running) readback of configuration data for verification
 • Partial reconfiguration while running
Xilinx-based solution: Configuration Block Diagram

RCU

Flash memory:
- config file
- result file
- mask file

Actel ProASIC+ (microcontroller)

Xilinx Virtex-II

New Configuration File
(update via Ethernet / DCS)
FPGA Radiation Tolerance Strategy 2/2

- Decide to migrate RCU-FPGA to XILINX
- Select appropriate device w.r.t. resources (e.g. number of I/O cells)
- Decide to keep DCS board unchanged (it can tolerate the possible failure rate)
- Port RCU design to new development environment
- Verify expected performance under irradiation:
 - XILINX test @ OCL in August
 - System test @ TSL Q1 2005 with large beam spot
Readout Control Unit – Xilinx FPGA radiation tests

- Test conditions
 - Flux = 3.7 x 10^{11} protons/cm²/s
 - Reconfiguration time = 5 s

- Real life
 - Flux = 7.9 x 10^2 hadrons/cm²/s
 - Reconfiguration time = 10 ms

- Duty cycle: 10^{11} times better in real life
New RCU – Final prototype

23 cm

13.5 cm
Outline

The ALICE TPC Front End Electronics

Progress overview of the main components:

- Front End Card (FEC)
 - Shaping Amplifier (PASA)
 - Digitizer and digital processor (ALTRO)
 - Board Controller
- Readout and Control Backplane
- Readout Control Unit (RCU)
 - Functions and performance
 - FPGA - radiation strategy
 - Prototyping status

Integration with the Detector:

- TPC Field Cage prototype in hall 167
 - PASA and ALTRO performance
- Test Beam at T10
 - System noise and TPC on-line monitor

Conclusions and future work
hall 167 - Integration of FEE components with the Detector

TPC Test Facility at CERN
(fall 2003 – spring 2004)

Inner Readout Chamber readout by
8 prototypes of Front End Card

Field Cage Prototype

DAQ - PC

Front End Bus cables

Pci-based Readout Control Unit
First integration with the detector

Use of Cosmic Rays:
- some of them generating high multiplicity events

On top of the Field Cage measurements under different conditions, the test allowed:
- To complete the PASA characterization
- To verify the performance of the Tail Cancellation and Moving Average Filters of the ALTRO
- To qualify the FEC grounding scheme.

(see ‘TPC sector tests results’ by L. Musa and ‘Cosmic ray measurements with TPC prototype’ by M. Kowalski and M. Ivanov in the previous Alice Clubs)
Outline

The ALICE TPC Front End Electronics

Progress overview of the main components:

- Front End Card (FEC)
 - Shaping Amplifier (PASA)
 - Digitizer and digital processor (ALTRO)
 - Board Controller
- Readout and Control Backplane
- Readout Control Unit (RCU)
 - Functions and performance
 - FPGA - radiation strategy
 - Prototyping status

Integration with the Detector:

- TPC Field Cage prototype in hall 167
 - PASA and ALTRO performance
- Test Beam at T10
 - System noise and TPC on-line monitor

Conclusions and future work
Configuration for the Test-Beam (May 2004)

IROC in Field Cage prototype readout with:

- 43 FECs (5500 channels, ~1% of Alice TPC) connected to
- 2 RCUs by
- 4 branches of ALTRO readout backplanes.
- 2 DCS boards interfaced to the RCUs and connected to the TTC,
- 2 SIUs for the DDL

'Realistic' Power supply distribution: Wiener500 with 40 m. cables
Noise Level

Example of a channel sampled at 10 MHz

Noise average level: \(~ 0.65\) ADC counts (r.m.s.) \(\approx 700\, e^-\) [TDR: <1000e^-]

(Results from the T10 test beam activity reported by J. Baechler in the 22.11.04 Alice Club talk)
TPC On-line Monitor - Beam tracks

With target

Without target

On-line Monitor status:
- Recently upgraded to the latest version of DATE
- Completed the mapping of the IROC and OROC pads
Outline

The ALICE TPC Front End Electronics

Progress overview of the main components:

- Front End Card (FEC)
 - Shaping Amplifier (PASA)
 - Digitizer and digital processor (ALTRO)
 - Board Controller
- Readout and Control Backplane
- Readout Control Unit (RCU)
 - Functions and performance
 - FPGA - radiation strategy
 - Prototyping status

Integration with the Detector:

- TPC Field Cage prototype in hall 167
 - PASA and ALTRO performance
- Test Beam at T10
 - System noise and TPC on-line monitor

Conclusions and future work
2004 has been a crucial year for the ALICE TPC Front End Electronics

Lot of progress, in particular:

Front End Card and main components:
- delivery and mass test of 49500 PASA
- mass test of 44000 ALTRO chip
- Integration of the Card with other detector components gave excellent results
- Mass production of 4800 cards, 400 of them already tested with yield higher than 90%

The design of the **Readout Backplanes** has been finalized: mechanical and electrical tests fully satisfactory. Mass production of 950 units will start after completion of integration tests with the SSW and the final RCU

The **final prototype** of the **Readout Control Unit** is now available for validation tests.
Summary and future work 2/2

- Final RCU prototype validation (Feb / March 05)

- 6 FEE partitions - sector test @ Cern (March 05)

- Verify expected full system performance under irradiation
 (System test @ TSL-Uppsala March 2005 with large beam spot)

- Mass Production and Test of the RCU (April – June 05)

- Mass Production and Test of the Backplanes (April – May 05)

Thank-you for your attention_
End of presentation