Contents

• ALTRO Implementation
• ALTRO Test Setup and Equipment
• ADC Characterisation
• Noise and Crosstalk
• Power Consumption
• ALTRO Testing Strategy
• Functional and Physical Validation
• Yield Results and Considerations
• Conclusions
ALICE TPC READOUT CHIP (ALTRO-16)

MAX SAMPLING CLOCK 40 MHz
MAX READOUT CLOCK 60 MHz

16-ch signal digitizer and processor
- HCMOS7 0.25 μm (ST)
- area: 64 mm²
- power: < 20 mW / ch
- prototype delivery: Feb ‘02
- 300 samples fully tested
ALTRO Test Setup

TPC Meeting 29.04.2002

B. Mota, A. Jiménez de Parga
ALTRO Test Board

- Analogue input signal
- 16 x differential linear drivers
- Altro chip under test
- Logic analyzer interface
- Power regulation
- Clock & trigger signals
- PC interface
- Test controller (FPGA)
16 channels in one shot
Effective Number of Bits (ENOB)

1MHz SINE WAVE

400 measurements with 1000 samples / measurement

THE ADC SHOWS ONLY THE QUANTIZATION ERROR
ENOB vs Frequency

Effective Number of Bits vs Input Frequency

Quartz Jitter:
25ps r.m.s.
100ps absolute

Amplitude Uncertainty:
\[
\frac{jitter}{4 \cdot f_{in}} \cdot 2^{10}
\]

0.5 bits at 4.8 MHz
Differential and Integral Non-Linearity
Chip Performance

ENOB vs Analog Vcc

ENOB vs Duty Cycle

ENOB vs Sampling Frequency

Digital Power Consumption vs Sampling Frequency

TPC Meeting 29.04.2002
B. Mota, A. Jiménez de Parga
Crosstalk and Digital Noise

DIGITAL NOISE

Readout Clock below -78 dBc (WC)

Bus interference below -65 dBc (WC)

CHANNEL-TO-CHANNEL CROSSTALK

\[
\begin{align*}
F_{in} = 1 \text{ MHz} & \quad 0.05 \text{ LSB rms} \quad (-80 \text{ dBc}) \\
F_{in} = 5 \text{ MHz} & \quad 0.2 \text{ LSB rms} \quad (-68 \text{ dBc})
\end{align*}
\]

Dynamic Range of a 10-bit ADC: 60 dB
Power Consumption

ADC Operating Point

<table>
<thead>
<tr>
<th>ONE CHIP</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital leakage current</td>
<td>1.2 mA</td>
</tr>
<tr>
<td>ADC Clock Tree (10 MHz)</td>
<td>23 mA</td>
</tr>
<tr>
<td>Readout Clock Tree (40 MHz)</td>
<td>1.4 mA</td>
</tr>
<tr>
<td>Processing Logic during Trigger (1%)</td>
<td>28 mA</td>
</tr>
<tr>
<td>16 ADCs at 10 MS/s</td>
<td>77 mA</td>
</tr>
</tbody>
</table>

Average Power Per Chip
- 257 mW

Average Power Per Channel
- 16 mW
Testing Strategy

ALTRO CHIP Testing

Functional Validation
- Fulfills all the processing functions required
 - ADC performance is satisfactory
- Realistic input patterns (Montecarlo & Measurements)
 - Consistent with HDL Simulations
 - Performed in one chip

Physical Validation
- Toggle all possible nodes and memory cells
 - Several million of test vectors
- Verify ADC performance
 - Repetitive and automatic for n chips
ALTRO CHIP

Functional Validation: Register Control Panel

Baseline Correction 1

Multi-Event Memory

Errors
- Readout Error
- Trigger Overlap
- Instruction Error
- Parity Error

SEU
- Interface
- Memory Unit
- Double Upset
- Simple Upset

Tail Cancellation Filter

Baseline Correction 2

Zero Suppression

Trigger
- Samples per Event
- Trigger Delay
- Pretrigger
- Trigger Counter

TPC Meeting 29.04.2002

B. Mota, A. Jiménez de Parga
Functional Validation: Realistic Input Pattern

The test input signal combines the signal measured on the TPC prototype with the amplitude and arrival time distributions generated by ALIROOT.

Zero suppression threshold: 5 ADC counts

Altro output filter disabled

Altro output filter enabled
Functional Validation: Realistic Input Pattern

Simulated baseline perturbation:
- electronics temp. variation (ramp-up)
- gating grid switching (systematic)
- power supply instability
- pick-up noise

Time samples: 0 to 8000
ADC counts: 0 to 500

EVENT 1
EVENT 2
EVENT 3