ALICE TPC Collaboration Meeting

Hardware and Software for the PASA Bulk Test

Status after the Test of the Enginnering Run

Uwe Bonnes, TU Darmstadt 8.10.2003
Hard- and Software for the PASA Bulk Test

• Topics
 – Design Objectives
 – Hardware Status
 – Present Test Setup
 – The Test of the Chips of the Engineering Run
 – Planning of the Bulk Test
 – Open Design Issues
 – Some Results of the Test
Hard- and Software for the PASA Bulk Test

• Design Objectives
 – Test 50000 Chips @ 80 % Yield in a short time
 • 1 Minute Test Time per Chip at 8 hours/day and 5 Days/week results in 20 weeks of test time!
 – Noise and Speed are Issues
 • 30 Mips is only about 150 femto Coulomb
 • 220 ns Target Shaping Time needs fast sampling
 – Use “well-known” elements of the TPC
 • 12 bit ADC from the ST family versus 10 bit in Altro chip
 • RCU Card/FEE Bus for connection to PC
Hard- and Software for the PASA Bulk Test

• Hardware
 - Features
 • 16 independent 14-bit DAC/ 12-bit ADC Channels with local memory on pluggable cards, running at 40 MHz
 • Set PASA voltages (Supply and 3 Reference Voltages) with slow 12-bit DACs
 • Slow 12-bit ADCs for these actual voltages, the connected currents and the static output voltage at 32 pin
 • Pluggable Test socket with Receptacle (only 5000 to 10000 insertions for socket guaranteed)
 • Negative Pulses (inadvertedly generated) require 400 us relax time. Handled by hardware.
Hard- and Software for the PASA Bulk Test

• Hardware (cont.)
 – Status
 • One setup fully equipped and tested
 • Another setup manufactured and boards loaded, but needs to be tested
 • Engineering setup with 4/4 channels and similar capabilities is still available when test setup out of house for bulk test
 – Calibration
 • DAC boards generate current. Steps in DAC current generate voltage steps in load resistors on Test Sockel Plugin. Coupling Capacitor between these load resistors and PASA input deliver a charge as wanted input stimulus
 • Needed 1 pF coupling capacitors not available better then +/-0.1 pF (+/- 10%). No reference available.
Hard- and Software for the PASA Bulk Test

• Hardware (cont.)
 - Calibration (cont.)
 • DAC Board Full scale current (20 mA) adjusted to better then 1000 ppm and fully interchangable
 • Input stimulus measured with spectroscopic amplifier at PASA input (without the actual PASA chip) at full scale chip
 • Adjusted to better then 1 % channel to channel match and 250 fC full range on socket plugin
 • Absolute values expected to be in 2.5 % range for statisticical reason.
Hard- and Software for the PASA Bulk Test

• Present Test Setup
 – Set up voltages, measure currents and channel output voltages (32 for 16 differential channels)
 – Acquire 32 kiWord samples for each channel with no input stimulus for Noise test
 – With given ADC board local memory size, 512 test windows are dedicated for each channel.
 – Each test window is 400 us long to satisfy the needed negative charge relax time
 • Change DAC to generate useful charge
 • Recorded 32 ADC samples
 • Reset DAC (eventually generating a negative pulse) and discard rest of samples
Hard- and Software for the PASA Bulk Test

• Present Test Setup
 – Test stimulus for each channel
 • 400 pulses forming a linear ramp up to 100fC
 • 52 pulses up to 250 fC
 • 40 pulses forming ramp down to – 250 fC
 • 10 pulses with channel under test with no input, but both neighbours at full scale
 • 10 pulses with channel under test with no input, but all other channels at full scale
Hard- and Software for the PASA Bulk Test

• Present Test Setup
 – Chip parameter calculated from this acquired data
 • Arithmetic and RMS mean of the 32 kiWord Noise sample
 • Gamma 4 fit of the linear ramp up to 70 fC
 • Arithmetic mean of the Gamma 4 fitting parameters (Gain, Offset, peaking Time)
 – Data of all chips at 3.3, 3.0 and 3.6 Volt was written as ASCII file (about 20 MiByte each file, 30 GiByte for 480 Chips at 3 Voltages)
 • Format documented and parsable by e.g. Gnuplot
Hard- and Software for the PASA Bulk Test

• Present Test Setup
 – Screening limits
 • Gain 12mV / fC ± 20%
 • FWHM = 190ns ± 20%
 • Current ≤ 80mA

• The Test of the Chips of the Engineering Run
 – Socket capacity limits slew rate
 • Pulses over 70 fC not useful to evaluate
Hard- and Software for the PASA Bulk Test

• The Test of the Chips of the Engineering Run
 – Testing Time (per Chip and Voltage Level) for Athlon 2400+ and local disk
 • 4 Second testing time (16 * 512 * 400 us)
 • 1 Second Transfer time (to RCU/ to User Memory)
 • 6 Seconds for Calculations, mostly about 5000 Gamma 4 Fits (using GSL Library)
 – With handling and manual marking total 1 Minute by skilled worker
 – RCU/FEE observation
 • Better mechanical connection between mezzanine/ board
 • FEE connectors on mezzanine should have clamps
Hard- and Software for the PASA Bulk Test

• The Test of the Chips of the Engineering Run
 − Most failing chips showed excessive supply current
 − 53 chips of 480 tested chips failed (89 % yield). Closer inspection of failing Chips perhaps usefull.
 − Dust sometimes caused Half/No Gain indication. Visual inspection an reinsertion needed for that case
 − PASA Chip in Socket more noise sensitive than soldered directly to board. Shielding used, so additional steps for each ship needed
 − Test at Min/Max voltage didn't show up new defects
Hard- and Software for the PASA Bulk Test

• Plans for the Bulk Test
 – Agreement with Lund to use the Robot at Lund
 • Hired external workforce on PASA testing budget
 – PASA Test setup with dedicated PC delivered to Lund. Communication between Robot and Tester. Socket based (probably Ethernet)
 – Agreement on exact test agenda
 • Full Test for Min/Max voltage needed?
 • Classification?
 • Sacrifice statistics for testing speed
Hard- and Software for the PASA Bulk Test

- Open Design Issues
 - Clamp Shell/ Open Top Socket?
 - Clamp Shell socket used for ALTRO test
 - Open Top Socket needs clamping mechanism, but allows Robot to serve second test setup interleaved and eventually a shield
 - Capacitive load seems same
 - Keep lead time 8-12 weeks in mind. Have enough spares
 - Air flow into socket/ over Chip to remove dust?