RCU Characterization

Bergen, 7th April 2005

Content

- New hardware prototype
- □ Generation of the Sampling Clock
- DCS Interface
- Clock Signals
- □ SIU Interface
- □ FEC Interface
- Conclusions

New Hardware Prototype

TOP SIDE

7th April 2005

RCU Characterization

New Hardware Prototype

Reconfiguration Support Elements

- FLASH MEM
- ProASIC plus

7th April 2005

RCU Characterization

B.Mota CERN – PH/ED

New Hardware Prototype

Problem: How to insure synchronism of SCLK on all 216 RCUs? (At the level of 1 TTC clock cycle)

□ By PLL in RCU FPGA using as input the TTC clock?

<< ... It is as I suspected. there is no elegant way of insuring phase synchronism ... Most likely, you will end up building a conventional divider on each Board, using flipflops ... >>

Peter Alfke, Senior Designer @ Xilinx Corp.

Due to indetermination in the "time to lock" of the PLL => Divider with global reset could be solution

DCS Interface

- Measurements @ DCS connector

7th April 2005

RCU Characterization

B.Mota CERN – PH/ED

Clocking scheme between RCU and DCS

Clock scheme used in measurements

Asynchronous protocol with two different clock domains

Requirements:

- Be able to work with RCU as stand-alone boards
- Eventually avoid 2 different clock domain when no TTC input is present?
- Automatic detection and selection of clock sources

Current DCS-RCU interface protocol: Write cycle

Current DCS-RCU interface protocol: <u>Read cycle</u>

Control lines driven by the DCS card

7th April 2005

Control lines driven by the DCS card

Control lines driven by the DCS card

Control lines driven by the DCS and RCU cards

• What is the nature of the power bounces due to data line switching?

- Excessive driving strength of the Excalibur FPGA?

=> Modification of current settings in DCS FPGA?

=> Addition of capacitors in the RCU board?

- Clocking Scheme for the DCS board?
 - RCU and DCS with 2 asynchronous clock domains?
 - Synchronous with automatic detection of clock in DCS/RCU cards?

Clock Signals

□ foCLK

- Driven by Xilinx towards SIU card
- Terminated with 50Ω resistor network on SIU card
- Tunable in driving strength and phase

- Driven by Xilinx towards GTL transceiver
- Sent to both branches of FECs
- Tunable in driving strength and phase

SIU Interface

- Measurements @ PCB traces -

7th April 2005

7th April 2005

FEC Interface

- Measurements @ PCB traces -

7th April 2005

RCU Characterization

B.Mota CERN – PH/ED

FEC control signals

FEC control signals

Conclusions

- Driving strength of all signals at the output of Xilinx has been adjusted.
- □ Calibrate phase between [RCLK & foCLK] with the internal Xilinx clock.
- □ Sampling clock generation to be changed, avoiding PLL.
- □ Integrity of DCS issued signals to be better understood. (Power Bounces)