

# DCS Detector Control System

- overview
- hardware
- firmware
- software
- status
- future
- people



## DCS-board

- single-board computer based on an Excalibur EPXA1
- ARM922T hardwired processor
- running Linux stored in a flash memory
- integrated PLD for custom logic with direct connection to the ARM

## Tasks:

- configuration of the RCU-FPGA
- configuration of the FEE/ALTROS
- monitoring/controlling of the FEE
- configuration/readout of the TTCrx
- distributing the L1trigger
- distributing the L2trigger and the eventheader

#### EPXA1

- ARM922T processor
- APEX 20K100E embedded PLD

#### Flash

- 4 Mbyte

#### SD-Ram

- 32 Mbyte

## TTCrx chip + OptoLink

- receives global detector clock
- transfers L1 trigger
- transfers L2a/r message

### Ethernet chip

- physical layer between logic and medium

### **JTAG**

- cross-configuration of DCSboards

### <u>ADC</u>

- voltage monitoring on DCSboard

#### DIMM144

connection to DCII



## Modules

#### **Ethernet**

- provides the access to the ETH

#### **TTCrx**

- interface to the TTCrx chip
- write/read register over I2C
- mappes all the TTCrx registers in a registerfile in the PLD
- decodes the L2a/r message. In case of a L2a message the trigger information is directly transfered over the RCU bus to the Dataassembler module

## **FPGA-Config**

- configures the RCU-FPGA. worst case time : ca. 800ms (488722 bytes á 1.6μs)

## **ADC-Readout**

- monitors the voltages on the DCS

### JTAG-Master

configurate the chained DCChoords



## DCS Module RCU-ACCESS

## Data-Path



## **Features**

- using "message" system. The complete datapath is transparent. Each transaction is acknowledged by the target.
- complete configuration data can be stored in the SD-Ram
- in case of a change of the configuration data only the neccessary parts must be changed
- system is technology-independent, modular and independent from the RCU clock
- pipelined: next message is prepared while waiting for the target acknowledge
- system is fully integrated and in use

## DCS Module RCU-ACCESS

## Message-System for Configuration and Monitoring

- 6 different kind of messages :
  Single Read/Write
  Multiple Read/Write
  Random Read/Write
- Payload consists of Address/Data
- Each Message is acknowledge and contains an Status report
- Following features are prepared and will be implemented soon:
  - Safety Message: This message is executed immediatly and overwrites "protected mode"
  - CRC check
  - Pedestal compressing.
  - "protected mode"



## DCS Module RCU-ACCESS

#### **RCU-bus**

- bidirectional
- 16bit address space
- 32bit data width
- asynchronous protocol
- common strobe to validate addr/data
- acknowledge to indicate valid transfer

#### Transfer rate

- without synchronizer: 32bit x 40MHz/4clkcycle =

## 40MByte/s

- with synchronizer : +4clkcyle/trx 32bit x 40MHz/8clkcylce = 20MByte/s

### Reliability

- bus has been tested in a 12h stresstest with appro. 200 billion transactions without any error

#### Synchronizer

- since the DCSboard and the RCU are running on different clock domains, synchronizer has been implemented to guarentee the data integrity





## DCS Module Trigger

## Trigger-Modul

- reading out the trigger chip
- keeps all the info's in a registerfile
- different modes of readout
  - continously
  - intervall
  - complete/partial
- Error checking/correction optional(CRC/Huffman)

## L2-Transfer

- In case of a L2accept the trigger is getting the bus immediatly to transfer the eventheader to the DA
- 2 L2-transfer-modes: normal: 56 clkcycles boosted: ca. 10 clkcycles



## Status

- using OpenSource BusyBox Linux
- drivers for the different modules are writen, tested and already in use
- DIM-Server and DIM-Client are implemented and tested but have to be modified due to the format of the configuration data format.
- Subscriber mechanism. The client subscribes to the server the desired services.
- 2 software routines to configure the RCU modules and the RCU-FPGA directly from the bash. Supports different dataformats and is able to execute scripts.



## DONE!

- Ethernet is implemented and has been fully tested
- Linux is up and running
- Communication to the TTCrx chip established
- Configuration and monitoring of the FEE/ALTROS is possible including a feedback from the modules if the data was accepted or not.
- The monitoring does not interfere with the datapath of the readout FEE-ALTRO-DA-SIU-DDL and can be used while the data-aquisition is in progress.
- Soft- and firmware to configure the RCU-FPGA have been developt and is currently under test.
- DIM-Server/Client architecture has been developt and tested and is currently been modified to match the format of Roland Bramms configuration data
- System has been used to debug and configure the full datapath within the RCU/DCS

## TO DO!

- Test of the RCU-FPGA configuration controller
- Upgrade to the next version of the RCU-access module
- Integration of Roland Bramm's configuration data into DIM
- Import of the TTCrx module into the CERN DCSboard

Bergen

D.Röhrich

K.Ullaland

B. Pommersche

J. Lien

A.Martinsen

T.Alt

M.Richter

J. Alme

**CERN** 

L. Musa

R. Campagniolo

C. Gonzales

B. Leto Mota

Heidelberg

V. Lindenstruth

D. Gottschalk

M. Stockmaier

V. Kiworra

T. Alt

<u>Köln</u>

T. Krawutschke

<u>Oslo</u>

Sten Solli

**Worms** 

S. Bablock

Christian Kofler



