The USB Linux S/W for the ALICE U2F card
Author: Markus Joos, CERN PH/ESS

Date 23.5.2005
State: Draft

1 Introduction

The U2F (USB to FEC Interface Card) is a custom interface card between a PC and the ALICE TPC Front End Card (FEC). For the communication with the PC, the U2F supports the USB 2.0 High Speed (480 Mbit/s) interface. The communication with the FEC is based on the ALice Tpc ReadOut (ALTRO) protocol as described in the ALTRO Chip User’s Manual. The bridge between these two interfaces is essentially based on a micro-sequencer (Readout Control Unit) that will execute sequentially a set of pre-loaded instructions. The purpose of the S/W described in this note is to enable Linux applications to communicate with the U2F.
2 System requirements

Being a High Speed device the U2F has to be connected to a PC with a High Speed capable USB 2.0 host controller via an appropriate cable. The S/W has been developed and tested under Linux 2.4.21 kernels (i.e. CERN SCL3). Older kernels are not supported. The S/W will be kept up to date with the latest Linux kernel released by the CERN Linux support team.
3 The S/W components

The S/W mentioned in this note is fully contained in the “u2f” sub-package of the “altro_usb” package. It resides in the ALICE offline CVS repository from where it can be checked out.
3.1 The library

If you run the makefile in the “u2f” subdirectory of the “altro_usb” a dynamic library (libu2f.so) will be built. If you are not integrating it with the system libraries you have to add the name of the directory that contains this library to your LD_LIBRARY_PATH variable. The API of the library is described below.
3.2 The test applications
The program “u2fscope” in the “u2f” sub-package allows to interactively executing the individual functions of the API. In addition the applications read_fec_fm, write_fec_fm and u2f_acq are provided for different purposes.
3.3 The external S/W

The U2F library and applications need the driver and libraries of the “tools” and “altro” sub-packages in “atrol_usb”. These sub-packages are described in a separate document.
4 The U2F high level library
4.1 Definition

On top of the low level ALTRO library is a specific library for the U2F card. It consists of two types of functions. One group deals with the actual transfer of data on USB whereas the second takes care of the encoding and decoding of information from and to the formats used by the respective memories in the U2F as well as the reading and writing of data from and to disk.
4.2 The API

Synopsis

u_int U2F_Open(int mode, char *node);

u_int U2F_Close(void);

Parameters

	int mode
	in
	Select between H/W and emulation

	char *node
	in
	The full path and name of the device node

Description

These functions open and close the U2F library as well as the underlying ALTRO library. They can be called several times. To close the library U2F_Close has to be called the same number of times as U2F_Open. The parameter mode allows to open the U2F library for access to the real H/W (mode = 0) or in S/W emulation mode (mode = 1). The node parameter specifies the path and file name of the USB device node. In most cases this will be “/dev/usb/altro”. You can use the constant “DEFAULT_NODE” (defined in altro.h) if you want to use this node file. The node file gets created by the script /etc/init.d/altro.
Synopsis

u_int U2F_IMEM_Read (u_int isize, u_int *osize, u_int offset, u_int data[]);
u_int U2F_PMEM_Read (u_int isize, u_int *osize, u_int offset, u_int data[]);

u_int U2F_RMEM_Read (u_int isize, u_int *osize, u_int offset, u_int data[]);

u_int U2F_ACL_Read (u_int isize, u_int *osize, u_int offset, u_int data[]);

u_int U2F_DM1_Read (u_int isize, u_int *osize, u_int offset, u_int data[]);

u_int U2F_DM2_Read (u_int isize, u_int *osize, u_int offset, u_int data[]);

Parameters

	u_int isize
	in
	The number of words to be read from the USB2FEC

	u_int *osize
	out
	The number of words actually received from the USB2FEC

	u_int offset
	in
	The offset (in entries) relative to the start of the respective memory

	u_int data[]
	out
	A pointer to an array of 32-bit words. The array has to be large enough to hold the maximum number of words that the respective memory can return

Description

These functions read a memory of the U2F. The parameter isize defines the number of words to be read from the respective memory. A word here is defined according to the lay-out of the respective memory. Words from the PMEM therefore are 10 bits wide and words from RMEM contain 20 bits. When reading a data memory isize specifies the number of 40 bit words to be read from the combined DM (i.e. 2 times 20 bit).
The parameter osize returns the number of data words actually received from the respective memory.

The parameter offset defines at which entry (number of data word), relative to the base address of the respective memory, the read operation starts.

The data[] array will be filled with the data received from the selected memory. In principle each of the 32-bit words in data[] will contain one word (10 to 24 bits) of the memory that has been read. The remaining (most significant) bits will be left empty.
In case of a data memory the library reads both the low and high 20 bits in one go. The elements of the data[] array will contain the data in the format:

data[N] = 20 bits from DML1/2
data[N+1] = 20 bits from DMH1/2
(N = 0,2,4,…)

Synopsis

u_int U2F_IMEM_Write (u_int osize, u_int offset, u_int data[]);

u_int U2F_PMEM_Write (u_int osize, u_int offset, u_int data[]);

u_int U2F_RMEM_Write (u_int osize, u_int offset, u_int data[]);

u_int U2F_ACL_Write (u_int osize, u_int offset, u_int data[]);

u_int U2F_DM1_Write (u_int osize, u_int offset, u_int data[]);

u_int U2F_DM2_Write (u_int osize, u_int offset, u_int data[]);

Parameters

	u_int osize
	in
	The number of words to be written to the USB2FEC

	u_int offset
	in
	The offset (in entries) relative to the start of the respective memory

	u_int data[]
	out
	A pointer to an array of 32-bit words. The array has hold at least osize valid words. In case of DM1 and DM2 it has to contain 2*osize words

Description

These functions write a memory of the USB2FEC. The parameter osize defines the number of words to be written to the respective memory. A word here is defined according to the lay-out of the respective memory. Words to the PMEM therefore are 10 bits wide and words to RMEM contain 20 bits.

The parameter offset defines at which entry (number of data word), relative to the base address of the respective memory, the write operation starts.

The data[] array has to be filled with the data to be sent to the selected memory. In principle each of the 32-bit words in data[] will contain one word (10 to 24 bits) of the memory that has been read. The remaining (most significant) bits have to be zero.

In case of a data memory the library writes both the low and high 20 bits in one go. The elements of the data[] array have to contain the data in the format:

data[N] = 20 bits to DML1/2

data[N+1] = 20 bits to DMH1/2

(N = 0,2,4,…)

Therefore in case of a write to DM1 or DM2 the number of valid data words in the data[] array has to be osize*2.

Synopsis

u_int U2F_Reg_Write(u_int register, u_int data);
u_int U2F_Reg_Read(u_int register, u_int *data);
Parameters

	u_int register
	in
	the offset of the register relative to 0x7800

	u_int data
	in
	the data to be written to the register

	u_int *data
	out
	the data read from the register

Description

These functions write or read the value of a register. The write function obviously only applies to the writeable registers.

The variable register contains the offset of the register relative to 0x7800. Symbolic constants are defined in u2f.h. Some functions are provided (see below) to encode / decode the bits of the individual registers.

Synopsis
u_int U2F_FMIREG_Read(u_int* data);
u_int U2F_FMOREG_Read(u_int* data);
u_int U2F_ERRST_Read(u_int* data);
u_int U2F_TRCFG1_Read(u_int* data);
u_int U2F_TRCFG2_Read(u_int* data);

u_int U2F_TRCNT_Read(u_int* data);
u_int U2F_LWADD_Read(u_int* data);
u_int U2F_IRADD_Read(u_int* data);
u_int U2F_IRDAT_Read(u_int* data);
u_int U2F_EVWORD_Read(u_int* data);
u_int U2F_ACTFEC_Read(u_int* data);
Parameters

	u_int *data
	out
	the data read from the respective register

Description

These functions are sort cuts based on U2F_Reg_Read(). They return the value of one specific register.
Synopsis

u_int U2F_TRCFG1_Write(u_int data);

u_int U2F_ACTFEC_Write(u_int data);

Parameters

	u_int data
	in
	the data to be written to the respective register

Description
These functions are sort cuts based on U2F_Reg_Write(). They set the value of one specific register.
Synopsis

u_int U2F_TRCFG1_Set(trcfg_t parameters);

Parameters

	trcfg_t parameters
	in
	A structure with data for the TRCFG1 register

Description

This function is based on U2F_TRCFG1_encode() and U2F_Reg_Write(). It encodes the data that are passed via the parameters structure and writes the result to the TRCFG1 register.
Synopsis

u_int U2F_ERRST_decode(u_int data, errst_t *parameters);
u_int U2F_TRCFG1_decode(u_int data, trcfg_t *parameters);
u_int U2F_TRCNT_decode(u_int data, trcnt_t *parameters);
Parameters

	u_int data
	in
	The raw data received from U2F_Reg_Read()

	errst_t *parameters
	out
	A structure with decoded information

	trcfg_t *parameters
	out
	A structure with decoded information

	trcnt_t *parameters
	out
	A structure with decoded information

Description

These functions decode the information received from a given register and fill a structure of an appropriate type with it. The definitions of the structures (see also u2f.h) are:

typedef struct

{

 u_int pattern_error; //Possible values are TRUE and FALSE

 u_int abort; //Possible values are TRUE and FALSE

 u_int timeout; //Possible values are TRUE and FALSE

 u_int altro_error; //Possible values are TRUE and FALSE

} errst_t;
typedef struct

{

 u_int tw; //Legal values are 0 - 0x3fff
 u_int bmd; //Legal values are 0 or 1
 u_int mode; //Legal values are 0, 2 or 3
 u_int remb; //Legal values are 0 – 0xf
 u_int empty; //Legal values are TRUE and FALSE
 u_int full; //Legal values are TRUE and FALSE
 u_int rd_pt; //Legal values are 0 to 7
 u_int wr_pt; //Legal values are 0 to 7
} trcfg_t;
typedef struct

{

 u_int ntr; //Possible values are 0 – 0xffff

 u_int nta; //Possible values are 0 – 0xffff

} trcnt_t;
Synopsis

u_int U2F_ERRST_Get(errst_t *parameters);

u_int U2F_TRCFG1_Get(trcfg_t *parameters);

u_int U2F_TRCNT_Get(trcnt_t *parameters);

Parameters

	errst_t *parameters
	out
	A structure with decoded data

	trcfg_t *parameters
	out
	A structure with decoded data

	trcnt_t *parameters
	out
	A structure with decoded data

Description

These functions are implemented on top of U2F_ERRST_decode(), U2F_TRCFG1_decode() and U2F_TRCNT_decode(). They read the respective register and return the decoded data in a structure. See above for the definitions of the structures.

Synopsis

u_int U2F_TRCFG1_encode(u_int *data, trcfg_t parameters);
Parameters

	u_int *data
	out
	The raw data to be passed to U2F_Reg_Write()

	trcfg_t parameters
	in
	A structure with encoded information

Description

This function encodes the information to be sent to the TRCFG1 register. The user fills a structure of type trcfg_t and sends it to the function. On return the parameter data contains the same information in an encoded form. Subsequently data is used in a call to U2F_Reg_Write().
Synopsis
u_int U2F_File_Read(char *name, u_int size, u_int data[]);
u_int U2F_File_Write(char *name, u_int size, u_int data[]);
Parameters

	char *name
	in
	A string specifying the path and name of the file to be opened

	u_int size
	in
	The number of data words to be read or written

	u_int data[]
	in (write)
	A pointer to an array of 32-bit words from which the data will be copied to the file

	u_int data[]
	out (read)
	A pointer to an array of 32-bit words to which the data will be copied from the file

Description

These functions read and write ASCII files and would typically be used in combination with the functions to read or write the memory blocks of the USB2FEC card. The files for U2F_File_Read() have to be formatted such that they contain one hexadecimal number (32-bit) per line. Comment lines and empty lines are not permitted. I case a file does not exist U2F_File_Write() opens it. If an existing file is opened for writing the new data will be appended to the existing one.
Synopsis
u_int U2F_Exec_Command(u_int command, u_int data);

Parameters

	u_int command
	in
	A constant (see u2f.h) representing the command

	u_int data
	in
	Additional data that may be needed to execute the command

Description

This function executes an ALTRO Interface Command. The parameter command is in fact the address of the command as required by the message format. The parameter data is only relevant for the EXEC command were it specifies the execution offset.
Synopsis

u_int U2F_Exec_RS_STATUS(void);

u_int U2F_Exec_RS_TRCFG(void);

u_int U2F_Exec_RS_TRCNT(void);

u_int U2F_Exec_EXEC(u_int data);

u_int U2F_Exec_ABORT(void);

u_int U2F_Exec_FECRST(void);

u_int U2F_Exec_SWTRG(void);

u_int U2F_Exec_TRG_CLR(void);

u_int U2F_Exec_RS_DMEM1(void);

u_int U2F_Exec_RS_DMEM2(void);

u_int U2F_Reset(void);

Parameters

	u_int data
	in
	the execution offset for the command chain to start

Description

These functions are short cuts based on U2F_Exec_Command() for the execution of specific commands. The parameter data of U2F_Exec_EXEC() specifies the execution offset of the command chain relative to the start of the instruction memory.

Synopsis

u_int U2F_ReadOut(u_int bsize, u_int *osize, u_char data[], u_int mode);

Parameters

	u_int bsize
	in
	The maximum number of bytes to read

	u_int *osize
	out
	The actual number of bytes actually read

	u_char data[]
	out
	A buffer for the data (has to be big enough to hold bsize bytes)

	u_int mode
	in
	The mode (see below)

Description

This function allows for the fast read out of large quantities of data. In this mode the U2F can send a continuous stream of data (many USB bursts). How much data the U2F sends depends on the context and the users normally does not know the exact amount but should be able to define an upper limit. Therefore the size of the data array and the value of bzise should be dimensioned accordingly. As the U2F send data in USB blocks of up to 1024 bytes the function internally only accepts a USB burst if at least 1024 bytes are available. It is therefore recommended to only use values for bsize that are multiples of 1024 bytes.

It is also possible to perform the read-out with multiple calls to U2F_ReadOut().

The function returns in any case if it does not receive any data during the USB time-out period. This time-out is defined in the ALTRO driver and has a value of 10 seconds.

The parameter mode consists of two flags:

· If M_FIRST is set the function enables the read-out mode when it is called. For the first call to U2F_ReadOut() M_FIRST always has to be set
· If M_LAST is set the function assumes that the U2F will not send more than bsize bytes. If The U2F sends more the function returns the error code U2F_LOW_MEM
· If M_TRIGGER is set the function sends a S/W trigger to the U2F card before it starts listening for incoming data.
Examples:

1) The U2F will not return more than 2000 bytes

U2F_ReadOut(2048, &osize, data, M_FIRST | M_LAST);

Used like that the function U2F_ReadOut() assumes that all data from the U2F fits into a buffer of 2000 bytes. If the U2F sends more data the error U2F_LOW_MEM will be returned. It is necessary to increase the value of bsize to 2048 because the U2F_ReadOut() function internally has to use a granularity of 1024 bytes.
2) The U2F will return 6000 bytes but the user wants to perform the read-out in blocks of 2000 bytes
U2F_ReadOut(2048, &osize, data1, M_FIRST);

U2F_ReadOut(2048, &osize, data2, 0);

U2F_ReadOut(2048, &osize, data3, M_LAST);

In this example the first call to U2F_ReadOut() will return at most 2048 bytes. The second call with mode = 0 tells U2F_ReadOut() to resume a suspended read-out. The third call finally would trigger the U2F_LOW_MEM error if the U2F still keeps sending data.
