The USB Linux low level support S/W for the ALICE U2F and GOOFIE cards
Author: Markus Joos, CERN PH/ESS

Date 8.3.2005
State: Draft

1 Introduction

The altro_usb package described in this note provides a Linux device driver and user library for the control of a multi-purpose USB core. This core H/W design in based on the XXX chip of Cypress. So far, it has been used for two projects: the U2F (USB to FEC Interface Card) and the GOOFIE (XXX). For both projects a high level library exists that is described in a separate note. Except for specialized debugging purposes an end-user will not have to use the S/W of this package directly.
2 System requirements

Being a High Speed device the ALTRO USB core has to be connected to a PC with a High Speed capable USB 2.0 host controller via an appropriate cable. The S/W has been developed and tested under Linux 2.4.21 kernels (i.e. CERN SLC3). Other kernels are not supported. The S/W will be kept up to date with the latest Linux kernel released by the CERN Linux support team.
3 S/W overview
3.1 Source code overview

The altro_usb package contains four sub-packages. Depending on which H/W you are using you have to compile and install a sub-set of them

3.1.1 Tools

This sub-package provides some services that are required by any of the other sub-packages.

3.1.2 ALTRO

In this sub-package you find the sources for the driver and the low level library as well as a script to install the driver and create the necessary nodes.
3.1.2.1 The driver

Under Linux USB devices are handled by a hierarchy of two drivers. The actual USB transactions are under the control of the driver for the host controller. For USB 2.0 High Speed you have to have the EHCI driver installed. This driver comes with standard CERN Linux installations but may not be running by default.

On top of the EHCI driver are the device specific drivers. The ALTRO driver provided by the altro_usb package falls into this category. It can be installed like any other dynamic Linux driver by means of the insmod utility (preferably from a script in /etc/init.d).

Once installed the driver provides a special file called “altro” in the /proc directory. This dynamic text file contains some useful information about the current status of the driver and lists the commands that can be send to it.
At this moment the ALTRO driver has a number of limitations:

· It is not guaranteed to work on SMP machines

· It is a single user / single process driver

· It supports only one USB device

Some of these issues have been addressed by Christian Holm Christensen (Christian.Holm.Christensen@cern.ch) who has ported the driver to 2.6 kernels. The source code of this variant of the driver is included in the “altro_usb” package but not officially supported by CERN.
3.1.2.2 The library

On top of the ALTRO driver is a simple, dynamically loaded user library called libaltro.so. It communicates with the driver by means of ioctl() calls exclusively. The read() and write() functions have not been implemented. The API of the library is described below.

3.1.2.3 The test application

The program “altroscope” in the altro_usb package allows to interactively executing the individual functions of the API.

3.1.2.4 The auxiliary libraries

Also in the altro_usb package are a few service libraries (rcc_time_stamp.c, rcc_error.c and get_input.c).They have been taken from the ATLAS DataFlow repository.

3.1.3 U2F

This sub-package contains the source code for the U2F library and is described in a separate document.

3.1.4 GOOFIE

This sub-package contains the source code for the GOOFIE library and is described in a separate document.

4 Building and installing the S/W
4.1 Downloading the code from CVS

The full source code is available from the ALICE off-line CVS repository. This server is maintained by Frederico Carminati and Peter Hristov. The procedure to checkout the altro_usb package is:

1) Log on to a Linux PC of your choice

2) Execute “cvs -d :pserver:cvs@alisoft.cern.ch:/soft/cvsroot login”

3) Type in the password “cvs”

4) Execute “cvs -d :pserver:cvs@alisoft.cern.ch:/soft/cvsroot co altro_usb”
If you want to commit changes to the S/W you have to execute a command like:
cvs -d :pserver:xyz@alisoft.cern.ch:/soft/cvsroot commit -m "..."

The “xyz” has to be replaced by your login for the ALICE off-line repository. If you don’t have a login you should contact Peter Hristov.
4.2 Compiling the S/W

In the top level of the altro_usb package is a very simple makefile that descends into the sub-packages and compiles the source code. If required the u ser can comment out the sub-packages that are not required for the respective project.

If you want to compile the packages one by one you should start with the “tools” package. The makefile produces one dynamic library: libtools.so. It is up to the user to find an appropriate place for this library. If it is not being added to the system libraries the user has to define the LD_LIBRARY_PATH environment variable such that it points to the directory containing this library.

The next sub-package to be built is “altro”. Its makefile builds the driver (altro.o), a dynamic library (libaltro.so) and an application (altroscope) for debugging purposes. The compilation of the driver should be done on the target system to avoid problems with the versions of kernel symbols. You have to have the kernel sources install on the machine your are building the S/W on. In the makefile you find the statement

 -I/usr/src/linux-2.4/include
If this directory has a different name on your system you have to update the makefile accordingly.

The other two sub-packages have a similar structure by do not contain a driver. More information is in the respective documents.

4.3 Installing the driver

The “altro” sub-package contains a script called “altro” which can be used to install the driver and create the device nodes at boot time. If you want to use this feature you have to:

1) Copy “altro” to /etc/init.d

2) Determine your run level. You find this information in /etc/inittab

3) Create a logical link in the start-up directory of your run level. E.g.:

cd /etc/rc5.d

ln –s ../init.d/altro S95altro

4) Open the file /etc/init.d/altro with an editor, locate the lines that contain the absolute path of the driver and update them to the directory that contains the driver binary on your system.
Once the driver has been installed you can check with

more /proc/altro

if it is working fine.

4.4 Installing the libraries

As mentioned above the individual sub-packages provide one dynamic library each. These libraries can be added to the system libraries (e.g. in /usr/lib). Alternatively you can leave them where they are and add the directories that hold them to your LD_LIBRARY_PATH environment variable. The ldd command (e.g. “ldd altroscope”) tells you if an application can find all the dynamic libraries it requires and where it would take them from.
5 The API
Synopsis

u_int ALTRO_Open(char *node)

Parameters

	char *node
	in
	This string has to contain the path and name of the node file

Description

This function initializes the package and opens the device node of the ALTRO USB core. It can be called several times. Only the first call performs the open action. Subsequent calls increment a counter. The node parameter specifies the path and file name of the USB device node. In most cases this will be “/dev/usb/altro”. You can use the constant “DEFAULT_NODE” (defined in altro.h) if you want to use this node file. The node file gets created by the script /etc/init.d/altro (see above).
Errors

	ALTRO_ERROR_FAIL
	The rcc_error library did not open

	ALTRO _FILE
	The library did not manage to open the node

Synopsis

u_int ALTRO_Close(void)

Parameters

None

Description

This function closes the library. It has to be called as many times as ALTRO_Open. Only the last call closes the library.

Errors

	ALTRO_NOTOPEN
	The function ALTRO_Open has not yet been called

Synopsis

u_int ALTRO_Send(altro_bulk_out_t &out)

Parameters

	altro_bulk_out_t &out
	In
	This structure contains the data to be sent

Description

This function requests the driver to transfer data to the ALTRO. The structure altro_bulk_out_t is defined in altro_common.h as follows:

typedef struct

{

 int nbytes;

 char data[BULK_OUT_SIZE];

} altro_bulk_out_t;

The parameter nbytes has to be set to the number of bytes to be sent to the ALTRO. It is not possible to send more than BULK_OUT_SIZE bytes in one transaction. The constant BULK_OUT_SIZE is also defined in altro_common.h (current value: 1024). The array data has to contain the data bytes that are to be written to the ALTRO.

Errors

	ALTRO_NOTOPEN
	The function ALTRO_Open has not yet been called

	ALTRO_EFAULT
	The library has received an error from the driver

Synopsis

u_int ALTRO_Get(altro_bulk_in_t &in)

Parameters

	altro_bulk_in_t &in
	out
	This structure contains the data that has been read from the ALTRO

Description

This function requests the driver to transfer data from the ALTRO. The structure altro_bulk_in_t is defined in altro_common.h as follows:

typedef struct

{

 int nbytes;

 char data[BULK_IN_SIZE];

} altro_bulk_in_t;

When the function returns the parameter nbytes contains the number of bytes read from the ALTRO. It is not possible to read more than BULK_IN_SIZE bytes in one transaction. The constant BULK_IN_SIZE is also defined in altro_common.h (current value: 1024). The array data contains the data bytes that have been read from the ALTRO.

Errors

	ALTRO_NOTOPEN
	The function ALTRO_Open has not yet been called

	ALTRO_EFAULT
	The library has received an error from the driver

Synopsis

u_int ALTRO_Control(altro_control_t &ctrl)

Parameters

	altro_control_t &in
	ctrl
	This structure contains the parameters for the control transaction to be executed

Description

This function requests the driver to carry out a control transaction. The structure altro_control_t is defined in altro_common.h as follows:

typedef struct

{

 unsigned char bRequest;

 unsigned char bmRequestType;

 unsigned short wValue;

 unsigned short wIndex;

 unsigned short data[100];

 unsigned short wLength;

} altro_control_t;

The parameters are defined as specified in $9.3 of the USB 1.1 standard. The dimension of the data array is arbitrary. A bigger array is possible but there will be a performance issue due to the overhead of copying it into and out of the driver.
Errors

	ALTRO_NOTOPEN
	The function ALTRO_Open has not yet been called

	ALTRO_EFAULT
	The library has received an error from the driver

