TPC FRONT END ELECTRONICS Progress Report

CERN – 1 July 2002

FEE TEAM: Bergen CERN Darmstadt TU Frankfurt Heidelberg Lund Oslo

Luciano Musa - CERN

BASIC READOUT CHAIN

GLOBAL ARCHITECTURE

Each TPC Sector is served by 6 Readout Subsystems

PRE-AMPLIFIER SHAPING AMPLIFIER (PASA) MAIN FEATURES

MAIN REQUIREMENTS

CHIP LAYOUT (AMS $0.35\mu m$)

- ◆ Gain: 12mV / fC (@ 12pF)
- FWHM: 190ns
- Noise: < 1000e (@ 12pF)
- INL: <1%
- Crosstalk: < 0.3%
- Power: < 20 mW / ch</p>

PULSE SHAPE

EQUIVALENT NOISE CHARGE

LINEARITY

BASELINE DISPERSION

PERFORMANCE OF PASA EMBEDDED IN FEC

Parameter	Requirement	Measured (preliminary)
Noise	1000 e	(600 + 23/pF) e
Conversion gain	12mV/fC	10.8 mV/fC (*)
Shaping time	190ns	190ns
Non linearity	<1%	< 0.35%
Crosstalk	<0.3%	<0.4%
Power consumption	< 20mW / ch	12mW/ch
Area		16.7mm ²

(*) to be corrected in the ER

BASIC COMPONENTS - ALTRO

220

16 channels in 1998

BASIC COMPONENTS - ALTRO

60

D 488-188-1 пппппп HHHHHHH ALTRO4 ALTRO4 шиннин 1111111111111 D afferfates 36 алалалалалалалалалалалалалалал **HARRARARARARARARA** THURLING THUILING ALTRO4 ALTRO4 ппппппп пппппп -----115 - 64-1

16 channels in 1999

BASIC COMPONENTS - ALTRO

16 channels in 2002

MAX SAMPLING CLOCK 40 MHz MAX READOUT CLOCK 60 MHz

16-ch signal digitizer and processor

- HCMOS7 0.25 μm (ST)
- area: 64 mm²
- power: 16 mW / ch
- prototype delivery: Feb '02
- 300 samples fully tested
- delivery of 4x10⁴ chips: Dec '02

ALTRO TEST SETUP

ALTRO – PERFORMANCE (1/12)

ALTRO TEST BOARD

16 CHANNELS IN ONE SHOT

<u>EFFECTIVE NUMBER OF BITS (ENOB)</u>

ENOB vs Frequency

Effective Number of Bits vs Input Frequency

Amplitude Uncertainty:

$$4 \cdot f_{in} \cdot jitter \cdot 2^{10}$$

0.5 bits at 4.8 MHz

ALTRO – PERFORMANCE (5/12)

Crosstalk and Digital Noise

CHANNEL-TO-CHANNEL CROSSTALK

F _{in} = 1 MHz	0.05 LSB rms	(-80 dBc)
F _{in} = 5 MHz	0.2 LSB rms	(-68 dBc)

Dynamic Range of a 10-bit ADC: 60 dB

POWER CONSUMPTION

FUNCTIONAL VALIDATION - ALTRO CONTROL PANNEL

FUNCTIONAL VALIDATION

PRODUCTION YIELD (MPW)

PRODUCTION YIELD (MPW)

FRONT END CARD

FIRST PROTOTYPE

FRONT END CARD ARCHITECTURE (128 CHANNELS)

FRONT END CARD LAYOUT

TOP SIDE

BOTTOM SIDE

FRONT END CARD LAYOUT

TOP SIDE

BOTTOM SIDE

FRONT END CARD COOLING

FEC READOUT BUS

INTEGRATION IN THE READOUT CHAMBER

FRONT END CARD MILESTONES

- Pre-series production of 30 FEC (60% of one IROC) started
- Market survey for mass production concluded in June '02
- Radiation test of FEC Sept 02
- Start of mass production Jan 03
- End of production test Jan 04

GLOBAL ARCHITECTURE

Each TPC Sector is served by 6 Readout Subsystems

TPC FEE – RCU PROTOTYPE (1/2)

READOUT CONTROL UNIT FIRST PROTOTYPE

FRONT END CARD + READOUT CONTROL UNIT

READOUT CONTROL UNIT SECOND PROTOTYPE

SUMMARY

• The TPC FEE consists of 4 basic components:

- PASA (40 000 chips)
- ALTRO (40 000 chips)
- FEC (4500 boards)
- RCU (220 boards)

• **Production:**

•	ALTRO:	Apr '02
•	PASA:	Nov '02
	FEC:	Jan '03

 A significant fraction of the complete electronics (5.000 channels) connected to the IROC will be tested during Summer '02

CONVERSION GAIN

FRONT-END SIGNAL PROCESSING

FRONT-END SIGNAL PROCESSING

AFTER TAIL CANCELLATION

100 output of the Baseline Substraction Unit zero supression fiveshold EV 1 EV 2 80 EV 3 60 40 -941 1000 2000 3000 4000 5000 6000 7000 8000 Ó

AFTER 1st BASELINE CORRECTION

AFTER 2nd BASELINE CORRECTION

FRONT-END SIGNAL PROCESSING

AFTER 1st BASELINE CORRECTION

