Proton irradiation at The Svedberg Laboratory

Setup and results

DCS card

Xilinx Virtex-II Pro

Kjetil Ullaland, Ketil Røed, Dieter Röhrich, Gerd Tröger, Matthias Richter

Beam line configuration and monitoring at TSL

I. GENERAL INFORMATION

Date(s): 07.10.04 -09.10.04

Beam line: B Project: FA163 User: D. Röhrich,K. Røed, G. Tröger

DUT: Xilinx Virtex II, DCS card

Particles delivered: protons **Particle energy**:

- Nominal: 180 MeV
- Measured, delivered by the cyclotron: 177.3 MeV

Beam line configuration and monitoring

II. Broad irradiation field

- DCS card

- Deduced particle energy on the user's irradiated object: 167.6 MeV.

Beam line configuration and monitoring

III. Narrow irradiation field

- Xilinx FPGA

- Deduced particle energy on the user's irradiated object: 169.7 MeV.

DCS system test

Main device: Altera Excalibur EPXA1

- ARM922T hardwired processor
- APEX 20K100E PLD
- Running linux stored in flash memory

Test scheme:

- DCS card placed in beam line
- JTAG connection to experiment pc
- remote connection through local ethernet to control room (SSH)
- c-program running under linux (M.Richter, UiB)
- writing random data to message buffer and reading back for comparison

Experienced failures

- data errors in readback of message buffer $\sim 10\%$
- Communication loss (ethernet failure) $\sim 70\%$
- Kernel related failures (linux) $\sim 20\%$
- Ethernet largest design on chip

DCS irradiation results

Total fluence = $2.09 \cdot 10^{10}$ protons / cm² Dose = 15 Gy (for 168 MeV protons) = (1.2-2.6) * 10 ALICE years

Dcs board fully functional, LINUX + memory test ran stable for 3 hours after the end of the irradiation.

SEFI rate

MTBF (mean time until first error) : 316 sec at a flux = $1.5 \cdot 10^6$ protons / cm² s

MTBF per board (inner TPC sector) = 167 - 343 hours ([x1-x2] uncertainty in simulation)MTBF per TPC (worst case)= 0.8 - 1.6 hoursMTBF per board (TRD)= 1200 hours

Results are consistent with our error rate estimates based on the irradiation results of the components

Time between SEFIs for the DCS board

The University of Bergen

www.ift.uib.no

Xilinx FPGA

DUT: Xilinx Virtex II Pro XC2VP7

- Main controlling device on the RCU card (XC2VP4)
- Contains a Power PC: hardwired processor not in use

Test scheme (G. Tröger, KIP):

- Xilinx FPGA test card placed in beam line
- remote connection through local ethernet (telnet)
- Pushing a know bit pattern of data through a shiftregister design
- Serial communication (VHDL)

Experienced failures

- Data pattern error
- Communication loss (seldom, small design)

Xilinx FPGA irradiation results

DUT: Xilinx Virtex II Pro XC2VP4

UPPSALA @ 180 MeV

Design shiftreg, no scrubb, no ecc shiftreg, with scrubb, no ecc shiftreg, with scrubb, bch38 OSLO @ 29 MeV	$\begin{array}{c} \textbf{SEFI CS} \\ 2.8 \cdot 10^{-9} \ cm^2 \\ 3.4 \cdot 10^{-9} \ cm^2 \\ 5.1 \cdot 10^{-10} \ cm^2 \end{array}$	SEU CS $4.5 \cdot 10^{-8} cm^2$ $6.3 \cdot 10^{-8} cm^2$ $6.6 \cdot 10^{-8} cm^2$
Design shiftreg, no scrubb, no ecc shiftreg, with scrubb, no ecc shiftreg, with scrubb, bch38	$\begin{array}{rrrr} 9.4 \cdot 10^{-9} & cm^2 \\ 1.0 \cdot 10^{-8} & cm^2 \\ 1.1 \cdot 10^{-9} & cm^2 \end{array}$	$\begin{array}{rrrr} 2.4 \cdot 10^{-7} & cm^2 \\ 1.5 \cdot 10^{-7} & cm^2 \\ 1.8 \cdot 10^{-7} & cm^2 \end{array}$

Altera APEX 20K400E SEFI @ 180 MeV: $6.0 \cdot 10^{-9} cm^2$

Plain Shift Register (flux ~1.5*10⁷ protons/cm²s) scrubbing started after ca. 180 sec.

Gerd Tröger (www.ti.uni-hd.de, www.ti-leipzig.de) 14 Jan 2005

www.ift.uib.no

www.ift.uib.no

Time between SEUs for the Xilinx FPGA

www.ift.uib.no

Number of SEUs between SEFIs for the Xilinx FPGA

Summary

- Xilinx FPGA cross-section in the order of the Altera APEX FPGA
- Xilinx offer active partial reconfiguration & configuration SRAM readback
- Thus able to repair SEU & SEFI failures
- Increasing scrubbing speed will reduce the no. of SEFI to an accepted level
- Possible cummulative effect (SEFIs)
- Final irradiation test of complete readout-chain under normal data taking conditions. Parasitic neutron beam at TSL (March 2005)

