Irradiation results

• SEU

- Test setup
- Cross section measurement
- Error estimate per run

K.Røed, D.Röhrich , K. Ullaland B.Skaali, J.Wikne, E.Olsen V.Lindenstruth,H.Tilsner S.Martens Marc Stockmaier Luciano Musa University of Bergen, Norway University of Oslo, Norway KIP, University of Heidelberg, Germany Physikalisches Institut, University of Heidelberg CERN

FPGAs on RCU mother/mezzanine boards

Single Event Upset (SEU)

- High-energetic hadrons induce nuclear reactions in the silicon (E > 20 MeV - protons, neutrons, pions, kaons)
- Intermediate energy neutrons (2 MeV < E < 20 MeV) contribute little (10%) to SEUs
- (Almost) no effect due to thermal neutrons
- Heavy recoil ions from reactions ionize the material
- Charge deposition leads to a change in state of a transistor (SEU)
- Soft error can be corrected (rewriting or reprogramming)

- Si(p,2p)Al
- $Si(p,p\alpha)Mg$
- Si(n,p)Al
- $Si(n,\alpha)Mg$

Upset detection in ALTERA FPGAs

- . Two types of concern
 - Upsets in configuration SRAM cells
 - •Single bitflips in register elements
- The APEX20K400E offers no direct readout of configuration SRAM
 - Indirectly detection of configuration upset through the VHDL design
 - Error observed reflects a change in logic due to a configuration upset, and not the configuration upset itself
 - A fixed pattern is shifted through and compared for setups when read out

Example of analyzing data

Test setup (1)

- Oslo Cyclotron
 - 25 and 28 MeV external proton beam
 - flux ~ $10^7 10^8$ protons/s cm²
 - Flux measurements: Uranium fission target + TFBC
 - Intensity monitor: faraday cup
 - Beam profile: spot 1.5cm x 1.5cm

Test setup (2)

- TSL (Uppsala)
 - 38 and 180 MeV external proton beam
 - flux ~ $10^7 10^8$ protons/s cm²
 - Flux measurements: Uranium fission target + TFBC
 - Intensity monitor
 - » scattered protons -> scintillator
 - Beam profile:
 - » spot \varnothing 3cm

Results (1)

Results (2)

- APEX20k400
 - Energy dependence of cross section
 - CS = 6.0 x 10⁻⁹ \pm 1.1 x 10⁻⁹ cm² (E >30 MeV)

Results (3)

Results (4)

• APEX EP20K60E - SIU

See Trigger/DAQ/HLT/Controls-TDR, p. 142 (DAQ section)

Proton energy (MeV)	SEU cross section (cm ²)	CL cross section (cm ²)
180	1.56 x 10 ⁻⁹	
100	1.70 x 10 ⁻⁹	1.50 x 10 ⁻⁹

Results (5)

• ALTERA EPXA1F484C1 - ARM

See S. Martens, Diploma thesis, KIP (2003)

Flux @ 28 MeV (protons/s cm ²)	Mean time between failures (s)	cross section (cm ²)
3 x 10 ⁶	360	1 x 10 ⁻⁹
7 x 10 ⁶	140	1 x 10 ⁻⁹
2 x 10 ⁷	50	1 x 10 ⁻⁹

Cross section results - summary

	Cross section [cm ²]
RCU FPGA	$6.0 \ge 10^{-9} \pm 1.1 \ge 10^{-9}$
SIU	1.6 x 10 ⁻⁹
DCS	2×10^{-9} (scaled to E > 30 MeV)

Radiation levels – simulation (1)

Radiation levels – simulation (2)

Radiation levels – simulation (3)

Tuble 5.5. Future linkes (puture estern 35) for minimum stas Fo Fo Futuring (ubsorber state)[2]						
Layers	1	2	3	4		
Neutron Flux $\left[cm^{-2}s^{-1} \right]$	4377.6±1.6%	3289.6±0.3%	2726.4±0.9%	$2368 \pm 0.5\%$		
Neutron Flux $[cm^{-2}s^{-1}]$ with $E_{kin} > 10 \text{ MeV}$	334.1	204.8	134.4	959		
Proton Flux $\left[cm^{-2}s^{-1} \right]$	$13.2\pm26.7\%$	$7.7 \pm 6.9\%$	$5.0 \pm 10.6\%$	$5.1 \pm 10.6\%$		
Proton Flux $[cm^{-2}s^{-1}]$ with $E_{kin} > 10 \text{ MeV}$	12.7	7.5	4.9	5.0		
$Pion^{\pm} Flux [cm^{-2}s^{-1}]$	$37.46 \pm 5.7\%$	$55.9 \pm 3.1\%$	47.5±2.4%	$28.5 \pm 2.8\%$		
Pion [±] Flux $[cm^{-2}s^{-1}]$ with $E_{kin} > 10 \text{ MeV}$	37.2	55.8	47.5	1.3		
Sum Flux with $E_{kin} > 10 \text{ MeV}$	384	268	187	129		

Table 3.3: Particle fluxes	(particles/cm ² /s) for minimum 1	bias Pb-Pb runn	ing (absorber side)[2]
radio 5.5. rantero nanes	(purceston 15	j tot minimu	oras i o i o raim	

Table 3.4: Particle flixes (particles/cm²/s) for minimum bias Pb-Pb running (non-absorber side)[2]

Layers	1	2	3	4
Neutron Flux $\left[cm^{-2}s^{-1} \right]$	1625.6±1.3%	$1638.4 \pm 2.1\%$	1625.6±1.2%	$1626 \pm 1.3\%$
Neutron Flux $[cm^{-2}s^{-1}]$ with $E_{kin} > 10 \text{ MeV}$	111.4	74.2	57.2	45.6
Proton Flux [cm ⁻² s ⁻¹]	19.5±9.6%	9.2±11.5%	8.1±19.3%	$4.6 \pm 8.5\%$
Proton Flux $[cm^{-2}s^{-1}]$ with $E_{kin} > 10 \text{ MeV}$	19.2	9.1	7.9	4.5
$Pion^{\pm} Flux [cm^{-2}s^{-1}]$	$114.4 \pm 1.0\%$	65.7±2.5%	$46.7 \pm 4.0\%$	$31.0 \pm 3.0\%$
Pion [±] Flux $[cm^{-2}s^{-1}]$ with $E_{kin} > 10 \text{ MeV}$	114.3	65.4	46.6	31.0
Sum Flux with $E_{kin} > 10 \text{ MeV}$	245	149	112	81

Error estimates per run

• SEUs in RCU main FPGA

Table 8.1: Expected numbers of SEUs for the different scoring regions in the TPC detector

	μ-absorber side					
Sector	1	2	3	4	5	6
SEU/(FPGA s) [x 10 ⁻⁶]	2.4±0.4	2.0 ± 0.4	1.6 ± 0.3	1.1 ± 0.2	0.9 ± 0.2	0.8 ± 0.1
	non-absorber side					
SEU/(FPGA s) [x 10 ⁻⁶]	1.6 ± 0.3	1.3 ± 0.2	0.9 ± 0.2	0.7 ± 0.1	0.6 ± 0.1	0.5 ± 0.1

• Errors per run (4 hours)

	Errors per run (4 hours) per TPC system
RCU	3.7
SIU	1.0
DCS	1.9

Conclusion (1)

- SRAM based FPGAs
 - Error rate is so low that one can cope with it if SEUs can be detected instantenously
 - ALTERA FPGAs do not provide real-time readback of configuration data nor disclose format of bitstream
 - Better choice: XILINX Virtex-II Pro FPGAs
 - » Real-time (= while running) readback of configuration data for verification
 - » Partial reconfiguration while running
 - » Existing infrastructure, running under linux (e.g. on DCS board), allowing full and high level control of the FPGA internals while running

Conclusion (2)

- Alternative: FLASH based FPGA (Actel)
 - ProASIC^{Plus} FLASH Family FPGAs
 - Preliminary irradidation results
 - » Device: APA075
 - » Test method: reading back configuration
 - » Failure (probably latch-up) after a fluence of 3.7x 10¹¹ protons/cm² ≅ dose (E_{dep} of 30 MeV protons in 300 µm Si) of 500 Gy (check!)
 - » Expected fluence in 10 years of ALICE: ~ 10^{11} protons/cm² (5.7 Gy)

» Further tests necessarv

Table 8: Particle fluences and total absorbed doses per 10 ALICE years.

Scoring region of TPC electronics	Absorber side	Non-absorber side
Neutron Fluence $[cm^{-2}]$	$(0.6-1.1) \times 10^{11}$	0.4×10^{11}
Neutron Fluence $[cm^{-2}]$ with $E_{kin} > 10 MeV$	$(2.4-8.4) \times 10^9$	$(1.1-2.8) \times 10^9$
Proton Fluence $[cm^{-2}]$ with $E_{kin} > 10 \text{ MeV}$	$(1.2-3.2) \times 10^8$	$(1.1-4.8) \times 10^8$
Pion Fluence $[cm^{-2}]$ with $E_{kin} > 10 \text{ MeV}$	$(0.7-1.4) \times 10^9$	$(0.8-2.9) \times 10^9$
Kaon Fluence $[cm^{-2}]$ with $E_{kin} > 10 \text{ MeV}$	$(2.4-7.6) \times 10^7$	$(3.3-19.3) \times 10^7$
Total Dose [Gy]	$(0.8-2.5) \times 10^{0}$	$(0.3-5.7) \times 10^{0}$

Next steps – a proposal

- Develop SEU detection strategies
- Decide to migrate RCU-FPGA to XILINX
- Select appropriate device w.r.t. resources (e.g. number of I/O cells)
- Decide to keep DCS board unchanged
- Keep Actel-FPGA as fallback solution
- Port RCU design to new develop environment
- Port existing reconfiguration scheme to DCS board
- Verify expected performance under irradiation
 - XILINX test @ OCL in June
 - System test @ TSL in fall with large beam spot (\oslash 30cm)
- Update RCU-layout