[image: image4.jpg]BC Reyisters

Register Nae Fegister Address Wiite Read

BC Test Passed?)
Test Progress mmmm——"

[image: image5.jpg]Channel Addrese C—
Progress .

TESTPASSED?

	DATE

	01/08/2005

	VERSION

	0.4

	Installation and user manual

	FEC TEST SOFTWARE

	Abstract
This document describes the software available to test the ALICE TPC Front End Cards using a USB to Front End Card (U2F). It covers the LabVIEW® application and the C software, from the point of view of installation, configuration and operation.

	Authors:

Hugo França Santos (PH-ED-DTA), Luciano Musa (PH-ED-DTA)

INDEX

51. Installation and configuration of the software

72. System control and supervision

83. The tests

83.1 Test BC registers

93.2 Test FEC registers

103.3 Test PMEM

113.4 Test digital PATH

123.5 Test analogue PATH

153.6 Test all

164. The Front End Card C library

1. Installation and configuration of the software

The FEC test software is organized in 4 directories:
LV_FILES – Contains the LabVIEW® application main file (U2F_Main.vi) and the folder SUB_LV_FILES that contain all other VIs.

C_CODE – Has the C code that was used to create the CINs in LabVIEW®. There are 4 types inside this directory: the C source files, the object files, the Makefiles and the .lsb that is the compiled code that LabVIEW® uses.
TEST_DIRECTORY – Contains the input and output files that are used during the software operation.
CONFIG – Has one configuration file that is created automatically by the LabVIEW® application.
In operation, the LabVIEW® software uses numerous input and output files, placed inside the TEST_DIRECTORY, for the several tests it performs. For a proper operation of the system, the input files need to be created manually and putted into the correct directories. The directory - TEST_DIRECTORY and the sub-ones - TEST_SOURCE, TEST_RESULTS and TEST_ROOT may also need to be created.
Here is the list of the input files needed for the system operation.

TEST_DIRECTORY

TEST_SOURCE

· PMEM_IN.pedestal – Data to write in pedestal memory for the PMEM and Digital Path tests.
· data_128 – Readout results comparison file.

TEST_ROOT

· ramp.analogue – Definition file for the pattern generator used in the analogue test.
· onepeak.analogue – Definition file for the pattern generator, used for the single pulse test.
· pattern2display.analogue - Definition file for the pattern generator used in the Live Display utility.

Only if the system has access to these files will be able to perform all the tests and create the following output files:
TEST_DIRECTORY

TEST_RESULTS

· PMEM_OUT.pedestal – Output file from PMEM test.

· DPATH_OUT.DIGITAL – Output file from Digital Path test.

· APATH_OUT.analogue – Analogue readout file from analogue test.

· APATH_OUT_to_Cables.analogue – Readout analogue file used only to test if cables are connected.

· APATH_OUT2Display.analogue – File created in the Live Display utility.

· Write.flash – File created by LabVIEW® that is written in the FLASH memory of the FEC.

· Read.flash – File generated by a C function containing the data read from the FLASH memory of the FEC.

· dd-mm-yyyy_<FECID>_<Interaction>.log – Log file of the test.
· DAY-dd-mm-yyy.log – Daily log file that contains one single line per test.
TEST_ROOT

· <FECID>_<Interaction>_oneEvent_dd-mm-yyyy.txt – Analogue readout file.

· <FECID>_<Interaction>_odd_dd-mm-yyyy.txt – Analogue readout from odd events.

· <FECID>_<Interaction>_even_dd-mm-yyyy.txt – Analogue readout from even events.

· <FECID>_<Interaction>_odd_dd-mm-yyyy.root – File constructed with the analogue readout file - one Event, and the analogue readout file - odd events. This file is in a format that the ROOT analysis program recognizes.

· <FECID>_<Interaction>_even_dd-mm-yyyy.root – File constructed with the analogue readout file - one Event, and the analogue readout file - even events. This file is in a format that the ROOT analysis program recognizes.

To start the LabVIEW® main application one should run the U2F_Main.vi file that is inside the LV_FILES directory.

2. System control and supervision
The application is divided in two parts: the supervision of the system and the tests of the Front End Card.
[image: image6.png]$©)

In the supervision panel one can define the Operator name, the FEC ID - manually or automatically if you’re using a Barcode Scanner - and the Interaction number. This last field is useful if you will test several times the same FEC but you still want to keep different log files. For instance: you make a first test in one FEC in wish the interaction number is 0. You find problems in the card and you disconnect it from the system for repairing. Now with the card repaired you test it again but with the interaction number 1. This way the new log file created in the test will have in the name a new interaction number that you can distinguish.
The button Get FEC ID will use the bar code scanner to get the FEC ID. If case of error it can be entered manually.

The U2F ERROR indicator is the next object of the panel. If errors occur in the U2F card, or in the communication between this card and the test application the red light will appear as well as the error code number.

The monitoring of the FEC and the Power Supply comes after. If you enable the FEC monitoring, the values of the temperature, analogue voltage, analogue current, digital voltage and digital current will appear in the panel. These values are read from the FEC. On the bottom of this you have the button View Power Supply Status. This will show the same voltage and current information but now the source of the values is the power supply. From this utility is also possible to turn ON or OFF the Power Supply and check the error status.

Follows the Log to File button, that when activated logs all the test information. The CONFIGURE PATHS button should be used when you change the TEST_RESULTS path. The VIEW LOG shows the data of the current log file.
3. The tests

The FEC test application can perform several different types of tests that will now be explained.
3.1 Test BC registers
[image: image7.png]operstor

FEC 1o T &

UBF ERAOR? o1

bl FEC Maritorng? |

Toperaoe N C

Aralogue Voltoe I Y
srioge Curent [N A
Ol Voltage [N
Digte Curert [A

LOGTOFILE? @I

“CONFIGURE PaTHS

This tool will test the registers of the control board.

In the table you see the BC registers that will be tested: their names, addresses, widths and value to write. The only register that is read-write is the TSMWORD, so this is the only one that we really write. For all the others we read and compare with the Write Value that is on the table and that is the value that the register should have.
The Switch BC Registers Test Values switches the Write Value to the two possible patterns: 1010… and 0101… Since only the TSMWORD is read-write, this is the only one that is affected.

When you click on TEST BC Registers the test will start and the coloured indicators (the individual and global) will show you if the test was successful or not. After the test you can click on the individual colour indicators to see the corresponding information in the indicators on top (in case of error, the Write and Read values will be different so the error can be clearly seen). Remark that these indicators show you the values in hexadecimal format while in the table you see them in decimal.
3.2 Test FEC registers

The ALTRO chip has two types of registers: global and per channel. Each Front End Card has eight ALTRO chips, this means that in one FEC each global register comes replicated 8 times and each channel register 128 times. To test all registers of one FEC we need to test 8x the global registers and 128x the channel registers.
[image: image1.jpg]Ciiip Channel Register Naie Register Adtress Wite Read

Channel Test Passed?

Test Progress —

deee

chip RegisterName Register Addtess Wilte Read

Global Registers

Chip Test Results
Lo Chip TestPassed?

e Test Progress mmm—

i TRCNT 1
PHADD,

The Switch Channel/Global Test Values switch changes the pattern that is written in the registers, the possible values are 1010… and 0101… To test all single bits of the registers the two different patterns should be tested.

After completing the test one can click in the colour indicators to see the write and read values in the numeric indicators positioned above. In case of error this will be useful.
3.3 Test PMEM

The application is able to test the pedestal memory. To do that, it writes the data from the file PMEM_IN.pedestal in the pedestal memory of all channels using the broadcast method. After, it reads one by one the PMEM data from the channels and compares it with the original one. The PMEM data read from the channels is written in the file PMEM_OUT.pedestal.
[image: image8.jpg]» [[@]

CHECK_CABLES_new.vi

W5 I B R

HEddAdd A A

TESYING, . -

HEAAE]

FEETE

It is possible to inspect these two files in the panel but only the data from the last channel is kept. Make sure that the field N. Words is set with the exact length of the input file.

3.4 Test digital PATH

Another module of the FEC test application is the ALTRO digital pattern test.
[image: image2.jpg]s o s (3 [EEH
umber of Events {3

Test progess

DIGITAL PATH DK

This test is performed in three steps:

· Configure ALTRO PMEM – The file PMEM_IN.pedestal is written to the PMEM memory.
· Execute Digital Readout – The digital data is written to the file DPATH_OUT.DIGITAL.
· Check result - Compares the digital readout data with a previous generated readout data (the file data_128), which is the correct output.

The parameters Number of samples and Number of events should be set according to the input and comparison files.

3.5 Test analogue PATH

The most complex test is the one that tests the analogue path.

[image: image3.jpg]sl o remove (3 ERE
i Tiggers: £ o

o progess [N

Cables OK?
Noise?
Spikes?
Qverflow?

ROOT Analisys
. AOOT Error code.
Ofet) m—
Gan) s
DE—
e
Crosstak) N

When the TEST ANALOGUE PATH tab of the Main application is selected one has access to several tools related to the analogue path test. The button TEST ANALOGUE PATH starts the main analogue test that consists on the following steps:
· Execute an analogue readout with no input signal – software trigger.
· Calculate mean and standard deviation of the readout data.
· Start the pattern generator with the “single pulse pattern”.
· Execute new analogue readout – hardware trigger.
· Check if all cables are connected – this is done subtracting the baseline to the pulse readout data (using the mean of the first one) and making a sum of all samples of each channel. If this sum is bigger that a predefined value the pulse was received so the cable is connected.

· Check for noise, spikes and overflow.

· Start the pattern generator with 100 pulses for the odd channels.

· Execute analogue readout, read 50 events – hardware trigger.
· Start the pattern generator with 100 pulses for the even channels.

· Execute readout, read 50 events – hardware trigger.
· Generate two files (for even and odd input patterns) to be interpreted by the ROOT analysis program.
· Call the ROOT tool to analyse the data.
[image: image9.jpg]D=

a

View_analogue_data.vi

Dt i

[rameioulfiEW_L2Fobview TEST_DIRECTORVITEST_AESLLTS/APATH_OLT analogue

(Graphi - ul data bioc for all the board charels 126§

1500~
1250~
1000-}
750}
s}
250

00,
o

a0 oo etho 0w

10600

12600

1400 1ston 1aboo zofon

2200

2400 26600 2800 sofon

32000

]
]

[Graphe. sin

[] Foto .~ |
o

el channel dato

[Graph. pedestal distribution for the curent charrel

(Graph: i distibution for 3 hanrets

1200~ 20 2601~
225
100~ -
ol 26
10009 175 £
= \ 150- iE-
a0~ 125
[
70~ 100-
a0 75+ ot
sa0- s0- il
400 4+
a0~ i -
A 1 " " u 06 ,
6 s o o a0 2o o L 6 & e @ iy
[[+ Poto |~} W a8][Poto o~ [IE w18 +l[Poto =]
TP 24y I xvjrny) I 123 ol

One can use the button SINGLE PULSE TEST to execute the six first steps of the previous list. The results will be displayed in this window:

[image: image10.jpg]Fle Edt_Dperate Tols Erowse Window el

Live_display_U2F.i Front Panel

[S]e] € [1n] [0t eprtoation Fort__~][5
LI T o ey
£ i Tiggers fom pater generstor T8 Counter = . -
g o “ Jo Joris feem [ses fuoa Jum (wa
-t T st e (alro mepring |
S5 Feadt i « y
- Eror? e foss
hannel ()
Fesdout Data o e

o)

50}

E

100

Tine

Intensity Grsph (Conneetor mapping)
e

Connector

15 20 20 w0 3

460 450 500

En

g (altra mapping)

1024 .
a0 14
200 12
w3z E]
e 2 5]
. # o

s

B2 ' I 2

I

£

ado

F-120
120
110
100
l-0s0
|-0z0
070
060
050

040
020

apmycury

The SHOW DATA button will open a window that displays the analogue readout data from one selected file. One can use the controls on the top of this form to inspect different files and different channels.

The LIVE DISPLAY utility does a loop in whish it activates the pulser and makes an analogue readout. The loop will end only when the STOP button is pressed.
[image: image11.png]screastson) [
wrteac)
e
O |
andogu patto: .

FoshWitln?

3.6 Test all
The TEST ALL function is the standard test that should be used in general. It makes all the tests, writes the FEC ID to the FEC Flash Memory and adds one line to the daily log file.

1. Asks operator name if not yet introduced.

2. Turn on the power supply.
3. Get the FEC ID by using the barcode reader or by asking manual input.
4. Test BC registers.
5. Test FEC channel and global registers with the two possible input patterns.

6. Test the pedestal memory.

7. Test the digital path.

8. Test the analogue path.

9. Write the FEC ID to the FEC flash memory

10. Turn off the power supply.
11. Add line to the daily log file.

4. The Front End Card C library
A C library containing a set of functions to execute in the FEC is available. This library is a middle software layer between the LabVIEW application and the U2F library.
All functions return 0 if correctly executed and the error number in case of error. There is one input parameter that is common to all functions and that is the one that allows the selection between normal and debug mode. If this parameter is set to 1 the function will print in the standard output some comments that show the progress of the function.
Write ALTRO Register
Synopsis

u_int Write_ALTRO_Reg(u_int debug, u_int ch_addr, u_int reg_addr, u_int reg_data);

Parameters

	u_int debug
	in
	Select between normal and debug mode

	u_int ch_addr
	in
	Address of the channel to write

	u_int reg_addr
	in
	Address of the register to write

	u_int reg_data
	in
	Data to write

Description
This function writes the reg_data value in the ALTRO register defined by ch_addr and reg_addr. If a global register is addressed the four LSB of the ch_addr parameter are ignored and the three MSB address the ALTRO chip. For instance, to write to one global register of the 8th ALTRO chip one can write any value between 112 and 127 in this parameter.

Read ALTRO Register
Synopsis
u_int Read_ALTRO_Reg(u_int debug, u_int ch_addr, u_int reg_addr, u_int *reg_data);

Parameters

	u_int debug
	in
	Select between normal and debug mode

	u_int ch_addr
	in
	Address of the channel to read

	u_int reg_addr
	in
	Address of the register to read

	u_int *reg_data
	out
	Data read from register

Description

This function writes in *reg_data the value of the register defined by ch_addr and reg_addr. The ch_addr parameter must have a value between 0 and 127, whish means that channels from 0 to 15 belong to the ALTRO chip 1 and so on until the chip 8.
As in the previous function, if a global register is addressed the four LSB of the ch_addr parameter are ignored and the three MSB address the ALTRO chip.

Write ALTRO PMEM
Synopsis

u_int Write_ALTRO_PMEM(u_int debug, u_int bcast, u_int ch_addr, u_int nwords, char *fname);

Parameters

	u_int debug
	in
	Select between normal and debug mode

	u_int bcast
	in
	Select between broadcast and single channel mode

	u_int ch_addr
	in
	Address of the channel to write

	u_int nwords
	in
	Number of words to write

	char *fname
	in
	Path of the file with the data to write

Description

This function writes the first nwrods of the file *fname in the Pedestal Memory of the channel defined by ch_addr. The ch_addr parameter must have a value between 0 and 127, wish means that channels from 0 to 15 belong to the ALTRO chip 1 and so on until the chip 8. The parameter bcast can have the value 0 or 1. When set to 1, the ch_addr is ignored and the function writes in all channels.

The nwords parameter must always be equal or inferior to the number of words of the file *fname.

Read ALTRO PMEM
Synopsis

u_int Read_ALTRO_PMEM(u_int debug, u_int ch_addr, u_int nwords, char fname[]);

Parameters

	u_int debug
	in
	Select between normal and debug mode

	u_int ch_addr
	in
	Channel address

	u_int nwords
	in
	Number of words to read

	char charfname[]
	in
	Name of the file to write the PMEM data

Description

This function writes the first nwrods of the channel Pedestal Memory defined by ch_addr in the file charfname[]. The ch_addr parameter must have a value between 0 and 127, wish means that channels from 0 to 15 belong to the ALTRO chip 1 and so on until the chip 8.

Turn ON and RESET FEC
Synopsis

u_int FEC_ON_RESET(u_int debug);

Parameters

	u_int debug
	in
	Select between normal and debug mode

Description

This function turns on and resets the Front End Card.

FEC Event Readout
Synopsis

u_int FEC_Event_Readout(u_int debug, u_int trg_mode, u_int rdo_mode, u_int nevents, u_int nsamples, char fname[]);

Parameters

	u_int debug
	in
	Select between normal and debug mode

	u_int trg_mode
	in
	Trigger mode: hardware or software

	u_int rdo_mode
	in
	Readout mode

	u_int nevents
	in
	Number of events to read

	u_int nsamples
	in
	Number of samples per channel to read

	char fname[]
	in
	File to write the data

Description

This function performs an analogue readout. The parameter trg_mode selects the trigger source: software or hardware, with the corresponding values 1 and 0. If set to hardware the card will wait for the external trigger to arrive, otherwise it performs the readout immediately. In hardware trigger mode, if the trigger doesn’t arrive in about 10 seconds the function will exit with the timeout error.
The rdo_mode parameter selects between the two possible readout modes: data push …
The nevents parameter defines the number of events to read. Each event data is appended to the file fname[].
FEC Event Readout - Multiple FEC BUS
Synopsis

u_int FEC_Event_Readout_2(u_int debug, u_int fec_addr, u_int trg_mode, u_int rdo_mode, u_int nevents, u_int nsamples, char fname[]);

Parameters

	u_int debug
	in
	Select between normal and debug mode

	u_int fec_addr
	in
	Address of the FEC

	u_int trg_mode
	in
	Trigger mode: hardware or software

	u_int rdo_mode
	in
	Readout mode

	u_int nevents
	in
	Number of events to read

	u_int nsamples
	in
	Number of samples per channel to read

	char fname[]
	in
	File to write the data

Description

This function is similar to the previous one but is able to address one singular FEC in a multiple FEC bus.

Board Control – Register Write
Synopsis

u_int FEC_BC_Reg_Write(u_int debug, u_int fec_addr, u_int reg_addr, u_int data);

Parameters

	u_int debug
	in
	Select between normal and debug mode

	u_int fec_addr
	in
	Address of the FEC

	u_int reg_addr
	in
	Address of the register to write

	u_int data
	in
	Data to write

Description

This function writes the value of data in the Board Control register defined by reg_addr. The fec_addr parameter enables to address one singular card in a multiple FEC bus.
Board Control – Register Read
Synopsis

u_int FEC_BC_Reg_Read(u_int debug, u_int fec_addr, u_int reg_addr, u_int *reg_data);

Parameters

	u_int debug
	in
	Select between normal and debug mode

	u_int fec_addr
	in
	Address of the FEC

	u_int reg_addr
	in
	Address of the register to read

	u_int *reg_data
	out
	Pointer that returns the register data

Description

This function reads the Board Control register defined by reg_addr and writes it in the memory position pointed by *reg_data. The fec_addr parameter enables to address one singular card in a multiple FEC bus.

Board Control Monitor
Synopsis

u_int FEC_BC_Mon(u_int debug, u_int fec_addr, float *temp, float *ana_v, float *ana_i, float *dig_v, float *dig_i);

Parameters

	u_int debug
	in
	Select between normal and debug mode

	float *temp
	out
	Temperature of the FEC

	float *ana_v
	out
	Analogue voltage

	float *ana_i
	out
	Analogue current

	float *dig_v
	out
	Digital voltage

	float *dig_i
	out
	Digital current

Description

This function gets the voltages, currents and temperature of the Front End Card.

Write Flash Memory
Synopsis

u_int FEC_FM_Write(u_int debug, u_int fec_addr, u_int nwords, char fname[]);

Parameters

	u_int debug
	in
	Select between normal and debug mode

	u_int fec_addr
	in
	Address of the FEC

	u_int nwords
	in
	Number of words to write

	char fname[]
	in
	Source file

Description

This function writes into the Flash Memory of the FEC the data from the file fname[].
Read Flash Memory
Synopsis

u_int FEC_FM_Read(u_int debug, u_int fec_addr, u_int nwords, char fname[]);
Parameters

	u_int debug
	in
	Select between normal and debug mode

	u_int fec_addr
	in
	Address of the FEC

	u_int nwords
	in
	Number of words to write

	char fname[]
	in
	Target file

Description

This function reads the Flash Memory of the FEC and writes it into the file fname[].

CERN

CH-1211 Geneva 23�Switzerland

U2F Library

FEC Library

LabVIEW Application

PAGE

