Irradiation results

K.Røed, D.Röhrich , K. Ullaland B.Skaali, J.Wikne, E.Olsen V.Lindenstruth,H.Tilsner S.Martens Marc Stockmaier Luciano Musa University of Bergen, Norway University of Oslo, Norway KIP, University of Heidelberg, Germany Physikalisches Institut, University of Heidelberg CERN

- SEU
- Test setup
- Cross section measurement
- Error estimate per run

Single Event Upset (SEU)

- Charge deposition by ionizing particle can lead to a change in state of a transistor
- Critical charge Q_{crit} = 0.0023 pC/μm² L²
 L = feature size (APEX 20k400: L=0.18 μm)
- Energy deposition E_{dep} = LET ρ s
 ρ = density (Si: ρ = 2.33 g/c m³);
 s = path length (s² = 2L² + c², c = device depth)
- Charge deposition Q_{dep} = E_{dep} q / w_{ehp} w_{ehp} = electron-hole pair creation energy (Si: w_{ehp} = 3.6 eV)
- Q_{dep} > Q_{crit} : SEU -> minimum LET: LET_{threshold}
- LET_{threshold} (APEX) $\approx 100 \text{ keV/mg/cm}^2$
- LET(30 MeV proton in Si) = 15 keV/mg/cm²

Single Event Upset (SEU)

- High-energetic hadrons induce nuclear reactions in the silicon (E > 20 MeV - protons, neutrons, pions, kaons)
- Intermediate energy neutrons (2 MeV < E < 20 MeV) contribute little (10%) to SEUs
- (Almost) no effect due to thermal neutrons
- Heavy recoil ions from reactions ionize the material
- Protons do not deposit enough charge deposited by direct ionization to cause a SEU
- Charge deposition leads to a change in state of a transistor (SEU)
- Soft error can be corrected (rewriting or reprogramming)

- Si(p,2p)Al
- $Si(p,p\alpha)Mg$
- Si(n,p)Al
- $Si(n,\alpha)Mg$
- Spallation

Test setup

Oslo Cyclotron

29 MeV external proton beam

beamspot 1 x 1cm

beam intensities > 10pA (flux : 0.6x10^8 protons/s cm²)

beam distribution made uniform by defocusing and using a gold foil placed upstream in beampath.

Upset detection in ALTERA FPGAs

Two types of concern •Upsets in configuration SRAM cells •Single bitflips in register elements

The APEX20K400E offers no direct readout of configuration SRAM

-Indirectly detection of configuration upset through the VHDL design

Error observed reflects a change in logic due to a configuration upset, and not the configuration upset itself

Upset detection

Possibility of undetectable configuration upsets

- -Not 100% usage of SRAM bits --> some upset do not influence logic
- -Test results give an *estimate* of configuration upsets.

First glance – configuration upsets and single bitflips induced in logic look the same

-Distinguishable by looking at them over time

-Configuration upset: Permanent until reprogramming of device

-Single upsets: Limited in time, present until next clock cycle

Task: Design hardware that detects SEU's in both logic and internal RAM blocks of the device

VHDL design

-32 bit wide and 400 bit long **shiftregister** implemented in **logic elements**

(approx. 90% of the LEs)

-32 bit wide and 4096 bit deep **FIFO** implemented in **internal RAM** blocks (approx 60% of the internal RAM bits)

Upset detection

A fixed pattern is shifted through and compared for setups when read out.

Communication through SCSN (Slow Control Serial Network) -Introduces problem of SEUs in the SCSN

Software on Linux PC to read out and analyse data (C, Matlab)

Example of analyzing data

Preliminary results

Cross section results

General observation

- No SEU at a proton beam energy of 10 MeV
- Dependence on orientation of device in respect to beam direction
 - » increase of cross section by a factor of 2 at 45° orientation as compared to 0°

Cross section results

• FPGA APEX 20K400

	Cross section [cm ²]
Configuration RAM	
Logic	$1.9 \ge 10^{-10} \pm 0.8 \ge 10^{-10}$
Internal RAM	$1.5 \ge 10^{-10} \pm 0.8 \ge 10^{-10}$
Single upsets	
Logic	<5.3 x 10 ⁻¹²
Internal RAM	$4.1 \ge 10^{-10} \pm 2.2 \ge 10^{-10}$

• FPGA ACEX 1K30

	Cross section [cm ²]
Configuration RAM	4 x 10 ⁻¹¹

Cross section results

• External compoments

	Cross section [cm ²]
External SRAM	$\approx 2 \times 10^{-10}$
SDRAM	$\approx 3 \times 10^{-11}$

- **FLASH** errors after $7 \ge 10^{11}$ protons
- FPGA EPX1

	Cross section [cm ²]
ARM core program	1.5 x 10 ⁻¹⁰

Error estimates per run

Particle $E > 10 \text{ MeV}$	Fluence [cm ⁻²] per 10 ALICE years	Fluence [cm ⁻²] per 10 ALICE years
	(Simulation 1, non- absorber & absorber side)	(Simulation 2, incl. absorber side)
Protons	6 x 10 ⁸ 3 x 10 ⁸	8.6 x 10 ⁸
Pions, kaons	3.5 x 10 ⁹ 1.5 x 10 ⁹	1.4 x 10 ⁹
Neutrons (5%)	1.9 x 10 ⁹ 5 x 10 ⁹	$\approx 10^{10}$? tbc

Particle E > 10 MeV	Flux [sec ⁻¹ cm ⁻²] (Simulation 1)	Flux [sec ⁻¹ cm ⁻²] (Simulation 2)
Protons	24 13	34
Pions, kaons	140 60	56
Neutrons (5%)	76 206	450? tbc

Error estimates per run

• High-energetic hadron flux: 250 – 550 hadrons/ sec⁻¹cm⁻²

	Error rate per run	Error rate per run
	(4 hours) per device	(4 hours) per system
FEC	3 x 10 ⁻⁴	1.4
RCU	1.5 x 10 ⁻³	0.3
DCS	3 x 10 ⁻³	0.6

Conclusion

- SRAM based FPGAs
 - SEU rate acceptable?
- Alternative: FLASH based FPGA (Actel)
 - Supposed to be radiation tolerant
 - Provide similiar resources
 - Irradiation tests are underway